Back to Search Start Over

Towards a feedback system for upper body bodyweight exercises using multiple inertial measurement units : A user-centred approach

Authors :
Papadopoulou, Panagiota
Publication Year :
2023
Publisher :
KTH, Medicinteknik och hälsosystem, 2023.

Abstract

This thesis explores the feasibility of developing an affordable and easy-to-use feed- back system that leverages information from multiple inertial measurement units (IMUs) to identify mistakes during upper body bodyweight training and provide real-time feedback to the user. To develop the system, a human-centered approach was used, which involved conducting semi-structured interviews with movement ex- perts and a workshop with targeted end-users to understand their needs. The study also involved 12 volunteers who performed push-ups, tricep dips, and planks cor- rectly and then made specific mistakes intentionally while wearing five IMUs. Binary and multiclass classifiers were developed to classify the exercise technique. The re- sults showed that personalized multiclass classifiers produced good to excellent quality results, while global classification techniques performed poorly. Additionally, an increased number of sensors did not always lead to improved classification re- sults, and the placement of the sensors could have a significant impact. The user in- put and evaluation of the feedback system pinpointed the need for customization and accessibility in the design. This thesis contributes to the development of a feedback system that can help users identify mistakes in their upper body bodyweight exer- cises and improve their form and technique. Denna avhandling utforskar genomförbarheten att utveckla ett prisvärt och lättan- vänt feedbacksystem som utnyttjar information från flera inertiella mätenheter (IMU: er) för att identifiera misstag under överkroppsövningar med egen kroppsvikt och ge användaren realtidsfeedback. För att utveckla systemet användes en human- centrerad metod, som innefattade semistrukturerade intervjuer med rörelseexperter och en workshop med målinriktade slutanvändare för att förstå deras behov. Studien inkluderade också 12 frivilliga som utförde armhävningar, tricep dips och plankor korrekt och sedan medvetet gjorde specifika misstag medan de bar på fem IMU: er. Binära och flerklassklassificerare utvecklades för att klassificera övningstekniken. Resultaten visade att personliga flerklassklassificerare producerade bra till utmärkta resultat, medan globala klassificeringstekniker presterade dåligt. Dessutom ledde ett ökat antal sensorer inte alltid till förbättrade klassificeringsresultat, och placeringen av sensorerna kunde ha en betydande påverkan. Användarinput och utvärdering av feedbacksystemet pekade på behovet av anpassning och tillgänglighet i designen. Denna avhandling bidrar till utvecklingen av ett feedbacksystem som kan hjälpa an- vändare att identifiera misstag i sina överkroppsövningar med egen kroppsvikt och förbättra sin form och teknik.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.od.......260..a7423ef2bd3510dc90c879d7464af0f9