Back to Search Start Over

Unsupervised crop anomaly detection at the parcel-level using optical and SAR images: application to wheat and rapeseed crops

Authors :
Mouret, Florian
Albughdadi, Mohanad
Duthoit, Sylvie
Kouamé, Denis
Poilvé, Hervé
Rieu, Guillaume
Tourneret, Jean-Yves
CoMputational imagINg anD viSion (IRIT-MINDS)
Institut de recherche en informatique de Toulouse (IRIT)
Université Toulouse 1 Capitole (UT1)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées
TerraNIS
Airbus Defence and Space [Toulouse]
Research project funded by TerraNIS SAS
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

This paper proposes a generic approach for crop anomaly detection at the parcel-level based on unsupervised point anomaly detection techniques. The input data is derived from synthetic aperture radar (SAR) and optical images acquired using Sentinel-1 and Sentinel-2 satellites. The proposed strategy consists of four sequential steps: acquisition and preprocessing of optical and SAR images, extraction of optical and SAR indicators, computation of zonal statistics at the parcel-level and point anomaly detection. This paper analyzes different factors that can affect the results of anomaly detection such as the considered features and the anomaly detection algorithm used. The proposed procedure is validated on two crop types in Beauce (France), namely, rapeseed and wheat crops. Two different parcel delineation databases are considered to validate the robustness of the strategy to changes in parcel boundaries.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.od.......212..aa867331c4a3d8f69f63d8a634bb8ecc