Back to Search Start Over

Evolution phonologique des langues et réseaux de neurones : travaux préliminaires

Authors :
Fourrier, Clémentine
Automatic Language Modelling and ANAlysis & Computational Humanities (ALMAnaCH)
Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Benzitoun, Christophe
Braud, Chloé
Huber, Laurine
Langlois, David
Ouni, Slim
Pogodalla, Sylvain
Schneider, Stéphane
Source :
Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP, 31e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Volume 3 : Rencontre des Étudiants Chercheurs en Informatique pour le TAL, JEP-TALN-RECITAL 2020-33ème Journées d’Études sur la Parole, 27ème Conférence sur le Traitement Automatique des Langues Naturelles, 22ème Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues, JEP-TALN-RECITAL 2020-33ème Journées d’Études sur la Parole, 27ème Conférence sur le Traitement Automatique des Langues Naturelles, 22ème Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues, Jun 2020, Nancy, France. pp.110-122
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

La prédiction de cognats est une tâche clef de la linguistique historique et présente de nombreuses similitudes avec les tâches de traduction automatique. Cependant, alors que cette seconde discipline a vu fleurir l’utilisation de méthodes neuronales, celles-ci restent largement absentes des outils utilisés en linguistique historique. Dans ce papier, nous étudions donc la performance des méthodes neuronales utilisées en traduction (les réseaux encodeur-décodeur) pour la tâche de prédiction de cognats. Nous nous intéressons notamment aux types de données utilisables pour cet apprentissage et comparons les résultats obtenus, sur différents types de données, entre des méthodes statistiques et des méthodes neuronales. Nous montrons que l’apprentissage de correspondances phonétiques n’est possible que sur des paires de cognats, et que les méthodes statistiques et neuronales semblent avoir des forces et faiblesses complémentaires quant à ce qu’elles apprennent des données.

Details

Language :
French
Database :
OpenAIRE
Journal :
Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP, 31e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Volume 3 : Rencontre des Étudiants Chercheurs en Informatique pour le TAL, JEP-TALN-RECITAL 2020-33ème Journées d’Études sur la Parole, 27ème Conférence sur le Traitement Automatique des Langues Naturelles, 22ème Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues, JEP-TALN-RECITAL 2020-33ème Journées d’Études sur la Parole, 27ème Conférence sur le Traitement Automatique des Langues Naturelles, 22ème Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues, Jun 2020, Nancy, France. pp.110-122
Accession number :
edsair.od.......212..290c38787afe6c4f3efbc85cc135ea67