Back to Search
Start Over
Combined Antenna and Localized Plasmon Resonance in Raman Scattering from Random Arrays of Silver-Coated, Vertically Aligned Multiwalled Carbon Nanotubes
-
Abstract
- The electric field enhancement associated with detailed structure within novel optical antenna nanostructures is modeled using the surface integral equation technique in the context of surface-enhanced Raman scattering (SERS). The antennae comprise random arrays of vertically aligned, multi-walled carbon nanotubes dressed with highly granular Ag. Different types of "hot-spot" underpinning the SERS are identified, but contrasting characteristics are revealed. Those at the outer edges of the Ag grains are antenna driven with field enhancement amplified in antenna antinodes while intergrain hotspots are largely independent of antenna activity Hot-spots between the tops of antennae leaning towards each other also appear to benefit from antenna amplification.
- Subjects :
- carbon nanotubes
Enhancement
Sers
Electrode
Astrophysics::Instrumentation and Methods for Astrophysics
Nanostructures
Surface
Aspect Ratio
optical antenna
Surface-enhanced Raman scattering
surface integral equation
Dependence
plasmons
Nanorod Arrays
Hybridization
Spectroscopy
Computer Science::Information Theory
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.od.......185..92093d61f18e4a75a3733f6592fb1fdd