Back to Search Start Over

Modèles bayésiens non-paramétriques pour la segmentation conjointe en mots et morphèmes

Authors :
Okabe, Shu
Yvon, François
Traitement du Langage Parlé (TLP )
Laboratoire Interdisciplinaire des Sciences du Numérique (LISN)
Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Sciences et Technologies des Langues (STL)
Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
ANR
Association for Computational Linguistics
ANR-19-CE38-0015,CLD2025,La documentation computationnelle des langues à l'horizon 2025(2019)
Source :
Findings of the ACL (EACL 2023), 17th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2023), 17th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2023), Association for Computational Linguistics, May 2023, Dubrovnik, Croatia. pp.628-642
Publication Year :
2023
Publisher :
HAL CCSD, 2023.

Abstract

International audience; Language documentation often requires segmenting transcriptions of utterances collected on the field into words and morphemes. While these two tasks are typically performed in succession, we study here Bayesian models for simultaneously segmenting utterances at these two levels. Our aim is twofold: (a) to study the effect of explicitly introducing a hierarchy of units in joint segmentation models; (b) to further assess whether these two levels can be better identified through weak supervision. For this, we first consider a deterministic coupling between independent models; then design and evaluate hierarchical Bayesian models. Experiments with two under-resourced languages (Japhug and Tsez) allow us to better understand the value of various types of weak supervision. In our analysis, we use these results to revisit the distributional hypotheses behind Bayesian segmentation models and evaluate their validity for language documentation data.

Details

Language :
English
Database :
OpenAIRE
Journal :
Findings of the ACL (EACL 2023), 17th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2023), 17th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2023), Association for Computational Linguistics, May 2023, Dubrovnik, Croatia. pp.628-642
Accession number :
edsair.od.......165..e85d98dcadb64a3338a018d5830760a7