Back to Search Start Over

Numerics for finite-dimensional optimal control problems

Authors :
Caillau, Jean-Baptiste
Ferretti, Roberto
Trélat, Emmanuel
Zidani, Hasnaa
Laboratoire Jean Alexandre Dieudonné (LJAD)
Université Nice Sophia Antipolis (1965 - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Université Côte d'Azur (UCA)
Mathematics for Control, Transport and Applications (McTAO)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Università degli Studi Roma Tre = Roma Tre University (ROMA TRE)
Laboratoire Jacques-Louis Lions (LJLL (UMR_7598))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Control And GEometry (CaGE )
Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jacques-Louis Lions (LJLL (UMR_7598))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Sorbonne Université (SU)
Laboratoire de Mathématiques de l'INSA de Rouen Normandie (LMI)
Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie)
Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

We survey on numerics for finite-dimensional nonlinear optimal control. The chapter is written as a guide to practitioners who wish to get rapidly acquainted with the main numerical methods used to efficiently solve an optimal control problem. We consider throughout two classical examples, quite simple but representative enough to be complexified and generalized to other problems: the Zermelo and the Goddard problems. We provide their solving codes that are available on the web and make the point on the most up-to-date and efficient methods existing nowadays. We range on direct and indirect methods, on Hamilton-Jacobi approaches and we end with optimistic planning. Our examples illustrate the pros and cons of the methods and we also show how those various approaches can be combined in view of augmenting the efficiency of the numerical solving.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.od.......165..a71d40adf1da2805789cab1fa21c0ba1