Back to Search Start Over

Modeling acto-myosin interaction: beyond the Huxley–Hill framework

Authors :
Chaintron, Louis-Pierre
Caruel, Matthieu
Kimmig, François
Département de Mathématiques et Applications - ENS Paris (DMA)
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Mathematical and Mechanical Modeling with Data Interaction in Simulations for Medicine (M3DISIM)
Laboratoire de mécanique des solides (LMS)
École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Publication Year :
2023
Publisher :
HAL CCSD, 2023.

Abstract

Contractile force in muscle tissue is produced by the interaction of myosin molecular motors that bind and pull on specific sites located on surrounding actin filaments. The classical framework set by the landmark works of A.F. Huxley and T.L. Hill to model this active system is build on the central assumption that thermal fluctuations of a given myosin motor are sufficiently small so that it cannot interact with more than one binding site at any time. In this paper we present the physiological and mathematical limitations of this approach to motivate a new formulation that circumvent them without resorting to the more complex multi-site model paradigm. The acto-myosin system is now described as a Markov process combining Langevin driftdiffusion and Poisson jumps dynamics. We show that the corresponding system of Stochastic Differential Equation is well-posed and derive its Partial Differential Equation analog in order to obtain the thermodynamic balance laws. We finally show that by applying standard elimination procedures, a modified version of the original Huxley-Hill framework can be obtained as a reduced version of our model. Theoretical results are supported by numerical simulations where the model outputs are compared to benchmark experimental data.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.od.......165..43cb1a79f6a2ae17a92fa7be3de532ec