Back to Search Start Over

Geometric Deep Neural Network Using Rigid and Non-rigid Transformations for Landmark-based Human Behavior Analysis

Authors :
Friji, Rasha
Chaieb, Faten
Drira, Hassen
Kurtek, Sebastian
Centre de Recherche Réseau Image SysTème Architecture et MuLtimédia (CRISTAL)
École Nationale des Sciences de l'Informatique [Manouba] (ENSI)
Université de la Manouba [Tunisie] (UMA)-Université de la Manouba [Tunisie] (UMA)
Talan Innovation Factory
Efrei Research Lab
Efrei (Efrei)-Université Paris-Panthéon-Assas
Laboratoire CRISTAL, ENSI, Tunisie
Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube)
École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Les Hôpitaux Universitaires de Strasbourg (HUS)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE)
Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique
Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
Department of Statistics, The Ohio State University
Source :
IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, pp.1-13. ⟨10.1109/TPAMI.2023.3291663⟩
Publication Year :
2023
Publisher :
HAL CCSD, 2023.

Abstract

International audience; Deep learning architectures, albeit successful in most computer vision tasks, were designed for data with an underlying Euclidean structure, which is not usually fulfilled since pre-processed data may lie on a non-linear space. In this paper, we propose a geometric deep learning approach using rigid and non-rigid transformations, named KShapenet, for 2D and 3D landmark-based human motion analysis. Landmark configuration sequences are first modeled as trajectories on Kendall's shape space and then mapped to a linear tangent space. The resulting structured data are then input to a deep learning architecture, which includes a layer that optimizes over rigid and non-rigid transformations of landmark configurations, followed by a CNN-LSTM network. We apply KShapenet to 3D human landmark sequences for action and gait recognition, and 2D facial landmark sequences for expression recognition, and demonstrate the competitiveness of the proposed approach with respect to state-of-the-art.

Details

Language :
English
ISSN :
01628828
Database :
OpenAIRE
Journal :
IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, pp.1-13. ⟨10.1109/TPAMI.2023.3291663⟩
Accession number :
edsair.od.......165..2d16bc9de0a7f9866d13e4607c66578a