Back to Search Start Over

Deciphering the structural dynamics in molten salt–promoted MgO-based CO2 sorbents and their role in the CO2 uptake

Authors :
Rekhtina, Margarita
Krödel, Maximilian
Wu, Yi-Hsuan
Kierzkowska, Agnieszka
Donat, Felix
Abdala, Paula M.
Müller, Christoph R.
Source :
Science Advances, 9 (26)
Publication Year :
2023
Publisher :
AAAS, 2023.

Abstract

The development of effective CO2 sorbents is vital to achieving net-zero CO2 emission targets. MgO promoted with molten salts is an emerging class of CO2 sorbents. However, the structural features that govern their performance remain elusive. Using in situ time-resolved powder x-ray diffraction, we follow the structural dynamics of a model NaNO3-promoted, MgO-based CO2 sorbent. During the first few cycles of CO2 capture and release, the sorbent deactivates owing to an increase in the sizes of the MgO crystallites, reducing in turn the abundance of available nucleation points, i.e., MgO surface defects, for MgCO3 growth. After the third cycle, the sorbent shows a continuous reactivation, which is linked to the in situ formation of Na2Mg(CO3)2 crystallites that act effectively as seeds for MgCO3 nucleation and growth. Na2Mg(CO3)2 forms due to the partial decomposition of NaNO3 during regeneration at T ≥ 450°C followed by carbonation in CO2. ISSN:2375-2548

Details

Language :
English
ISSN :
23752548
Database :
OpenAIRE
Journal :
Science Advances, 9 (26)
Accession number :
edsair.od.......150..e4f084a87da8242ce804e6d07278cf28