Back to Search
Start Over
Multi-fidelity assessment of exhaust systems for complete engine-airframe integrations
- Publication Year :
- 2020
-
Abstract
- For podded underwing configurations, the goal of specific fuel consumption reduction has led to engine designs with larger fan diameters and higher bypass ratios to increase propulsive efficiency. As a consequence of this trend, the aerodynamic interference with the airframe is increased. Non-axisymmetric exhaust geometries could minimise such interference for coupled configurations. Class Shape Transformation functions are used to define 3D podded engine geometries that are installed on a transonic aircraft configuration. The complete system is assessed at mid-cruise conditions of a representative long-range cruise operation. The assessment is conducted by multi-fidelity computational fluid dynamics computations that are Euler inviscid and Reynolds Averaged Navier Stokes turbulent methods. The correlation between the different fidelities is analysed and a multi-fidelity co-kriging model is developed. The model is applied to predict the behaviour of installed non-axisymmetric exhaust systems and results into a 33% computational benefit compared to single-fidelity surrogates.
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.od........70..7122d22436da06f04043c65748cbd029