Back to Search
Start Over
Refined topological strings on local $ {\mathrm{\mathbb{P}}}^2 $
- Publication Year :
- 2012
- Publisher :
- Springer, 2012.
-
Abstract
- We calculate the refined topological string partition function of the Calabi-Yau threefold which is the total space of the canonical bundle on $ {\mathrm{\mathbb{P}}}^2 $ (the local $ {\mathrm{\mathbb{P}}}^2 $ ). The refined topological vertex formalism can not be directly applied to local $ {\mathrm{\mathbb{P}}}^2 $ therefore we use the properties of the refined Hopf link to define a new two legged vertex which together with the refined vertex gives the partition function of the local $ {\mathrm{\mathbb{P}}}^2 $ . We calculate the refined topological string partition function of the Calabi-Yau threefold which is the total space of the canonical bundle on $\mathbb{P}^2$ (the local $\mathbb{P}^2$). The refined topological vertex formalism can not be directly applied to local $\mathbb{P}^2$ therefore we use the properties of the refined Hopf link to define a new two legged vertex which together with the refined vertex gives the partition function of the local $\mathbb{P}^2$.
- Subjects :
- Mathematics::Algebraic Geometry
Particle Physics - Theory
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.od........65..f31324094c1d1f585cf3e5dc33208b36