Back to Search
Start Over
Treelet Probabilities for HPSG Parsing and Error Correction
- Source :
- LREC 2014, Ninth International Conference on Language Resources and Evaluation, 2887-2892, STARTPAGE=2887;ENDPAGE=2892;TITLE=LREC 2014, Ninth International Conference on Language Resources and Evaluation
- Publication Year :
- 2014
-
Abstract
- Most state-of-the-art parsers take an approach to produce an analysis for any input despite errors. However, small grammatical mistakes in a sentence often cause parser to fail to build a correct syntactic tree. Applications that can identify and correct mistakes during parsing are particularly interesting for processing user-generated noisy content. Such systems potentially could take advantage of linguistic depth of broad-coverage precision grammars. In order to choose the best correction for an utterance, probabilities of parse trees of different sentences should be comparable which is not supported by discriminative methods underlying parsing software for processing deep grammars. In the present work we assess the treelet model for determining generative probabilities for HPSG parsing with error correction. In the first experiment the treelet model is applied to the parse selection task and shows superior exact match accuracy than the baseline and PCFG. In the second experiment it is tested for the ability to score the parse tree of the correct sentence higher than the constituency tree of the original version of the sentence containing grammatical error.
- Subjects :
- TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- LREC 2014, Ninth International Conference on Language Resources and Evaluation, 2887-2892, STARTPAGE=2887;ENDPAGE=2892;TITLE=LREC 2014, Ninth International Conference on Language Resources and Evaluation
- Accession number :
- edsair.narcis........eaecb8065d88a6f780a9e3576d0a7a4a