Back to Search
Start Over
Addressing the productivity paradox with big data:: A literature review and adaptation of the CDM econometric model
- Publication Year :
- 2020
- Publisher :
- UNU-MERIT working papers, 2020.
-
Abstract
- This paper develops the plan for the econometric estimations concerning the relationship between firm productivity and the specifics of the innovation process. The paper consists of three main parts. In the first, we review the relevant literature related to the productivity paradox and its causes. Specific attention will be paid to broad economic trends, in particular the higher importance of intangibles, the increasing importance of knowledge spillovers and servitization as drivers of the slowdown in productivity growth. In the second part, we introduce a plan for the econometric estimation strategy. Here we propose an extended Crépon-DuguetMairesse type of model (CDM), which enriches the original specification by the three influence factors of intangibles, spillovers, and servitization. This will allow testing the influence of these three factors on productivity at the level of the firm within a unified framework. In the third part, we build on the literature review in order to provide a detailed plan for the data collection procedure including a description of the variables to be collected and the source from which the variables are coming. It should be noted that we will rely partly on structured data (e.g. ORBIS), while many others variables will need to be generated from unstructured sources, in particular the webpages of firms. The use of unstructured data is a particular strength of our proposed data collection procedure because the use of such data is expected to offer novel insights. However, it implies additional risks in terms of data quality or missing data. Our data collection plan explores the maximum potential of variables that will ideally be made available for later econometric treatment. Whether indeed all variables will have sufficient quality to be used in the econometric estimations will be subject to the outcomes of the actual collection efforts.
- Subjects :
- intangibles
productivity
data collection
R&D
o31 - Innovation and Invention: Processes and Incentives
IPR
o47 - "Measurement of Economic Growth
Aggregate Productivity
Cross-Country Output Convergence"
productivity paradox
l80 - Industry Studies: Services: General
o32 - Management of Technological Innovation and R&D
economic growth
innovation
open innovation
big data
c80 - "Data Collection and Data Estimation Methodology
Computer Programs: General"
d24 - "Production
Cost
Capital
Capital, Total Factor, and Multifactor Productivity
Capacity"
e22 - "Capital
Investment
Servitization
o40 - Economic Growth and Aggregate Productivity: General
large data sets
knowledge diffusion
o34 - Intellectual Property Rights
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.narcis........9d77bb84f91165bf134656462c2446aa