Back to Search Start Over

Multi-Omic Biomarkers Improve Indeterminate Pulmonary Nodule Malignancy Risk Assessment

Authors :
Kinahan, Kristin J. Lastwika
Wei Wu
Yuzheng Zhang
Ningxin Ma
Mladen Zečević
Sudhakar N. J. Pipavath
Timothy W. Randolph
A. McGarry Houghton
Viswam S. Nair
Paul D. Lampe
Paul E.
Source :
Cancers; Volume 15; Issue 13; Pages: 3418
Publication Year :
2023
Publisher :
Multidisciplinary Digital Publishing Institute, 2023.

Abstract

The clinical management of patients with indeterminate pulmonary nodules is associated with unintended harm to patients and better methods are required to more precisely quantify lung cancer risk in this group. Here, we combine multiple noninvasive approaches to more accurately identify lung cancer in indeterminate pulmonary nodules. We analyzed 94 quantitative radiomic imaging features and 41 qualitative semantic imaging variables with molecular biomarkers from blood derived from an antibody-based microarray platform that determines protein, cancer-specific glycan, and autoantibody–antigen complex content with high sensitivity. From these datasets, we created a PSR (plasma, semantic, radiomic) risk prediction model comprising nine blood-based and imaging biomarkers with an area under the receiver operating curve (AUROC) of 0.964 that when tested in a second, independent cohort yielded an AUROC of 0.846. Incorporating known clinical risk factors (age, gender, and smoking pack years) for lung cancer into the PSR model improved the AUROC to 0.897 in the second cohort and was more accurate than a well-characterized clinical risk prediction model (AUROC = 0.802). Our findings support the use of a multi-omics approach to guide the clinical management of indeterminate pulmonary nodules.

Details

Language :
English
ISSN :
20726694
Database :
OpenAIRE
Journal :
Cancers; Volume 15; Issue 13; Pages: 3418
Accession number :
edsair.multidiscipl..f5274447a16c5e56b9b1927fac94db95
Full Text :
https://doi.org/10.3390/cancers15133418