Back to Search
Start Over
What we learn about bipolar disorder from large-scale neuroimaging
- Source :
- Human brain mapping. 43(1):56-82
- Publication Year :
- 2022
- Publisher :
- Wiley, 2022.
-
Abstract
- MRI-derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis-driven studies of BD. Through this effort, over 150 researchers from 20 countries and 55 institutions pool data and resources to produce the largest neuroimaging studies of BD ever conducted. The ENIGMA Bipolar Disorder Working Group applies standardized processing and analysis techniques to empower large-scale meta- and mega-analyses of multimodal brain MRI and improve the replicability of studies relating brain variation to clinical and genetic data. Initial BD Working Group studies reveal widespread patterns of lower cortical thickness, subcortical volume and disrupted white matter integrity associated with BD. Findings also include mapping brain alterations of common medications like lithium, symptom patterns and clinical risk profiles and have provided further insights into the pathophysiological mechanisms of BD. Here we discuss key findings from the BD working group, its ongoing projects and future directions for large-scale, collaborative studies of mental illness.
- Subjects :
- bipolar disorder
mega-analysis
volume
neuroimaging
MAJOR PSYCHIATRIC-DISORDERS
ENIGMA
cortical surface area
DIABETES-MELLITUS
cortical thickness
HUMAN BRAIN
COGNITIVE IMPAIRMENT
psychiatry
meta-analysis
SCHIZOAFFECTIVE DISORDER
HIPPOCAMPAL VOLUMES
PSYCHOTIC FEATURES
CORTICAL THICKNESS
GRAY-MATTER VOLUME
MRI
SPECTRUM DISORDER
Subjects
Details
- Language :
- English
- ISSN :
- 10659471
- Volume :
- 43
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Human brain mapping
- Accession number :
- edsair.dris...01423..cdbcf4fbee2771f2732c7843750d716e