Back to Search
Start Over
Transmission of antibiotic resistance from animals to humans : Broilers as a reservoir of ESBL-producing bacteria
- Publication Year :
- 2016
-
Abstract
- Huijbers, P.M.C. (2016). Transmission of antibiotic resistance from animals to humans: Broilers as a reservoir of ESBL-producing bacteria. PhD thesis, Wageningen University, Wageningen, the Netherlands. Antibiotic resistance in animals becomes a public health issue when there is transmission of antibiotic resistant bacteria, or their resistance genes, from animals to humans. β-lactam antibiotics are critically important for the treatment of human bacterial infections. Resistance to this class of antibiotics, mediated by extended-spectrum β-lactamases (ESBL) has emerged. Broilers might contribute to transmission to humans due to the high prevalence of ESBL-producing Enterobacteriaceae among their intestinal biome, compared to other livestock species, companion animals, and wildlife. Transmission to humans might occur via the food chain, by direct contact or via the environment. The aim was to investigate transmission of antibiotic resistant bacteria between animals and humans, and more specifically transmission of ESBL-producing E. coli between broilers, and between broilers and humans in varying degrees of contact with these animals. Systematically collected and categorised evidence from literature showed that clinically relevant antibiotic resistant bacteria were present in the natural environment, that is in soil, water, air and wildlife. It was therefore hypothesised that humans in areas with high broiler densities might have an increased risk for carriage of ESBL-producing Enterobacteriaceae. This hypothesis was rejected, as the observed risk was lower for these individuals. The situation might be different for individuals living on broiler farms as ESBL-producing E. coli were detected on all investigated farms. Among broilers, the within farm prevalence approached 100%, and there was no difference between conventional and organic farms at five weeks, i.e. just before slaughter on conventional farms. On organic farms, the prevalence decreased to 80.0% at 70 days, i.e. slaughter age. Not only transmission to humans via the farm environment, but close physical contact with broilers might, therefore, lead to increased risk for carriage. Prevalence among farmers, their family members and employees on both conventional (19.1%) and organic (18.5%) broiler farms was higher compared to humans in the general population (5.1%). Moreover, people in close contact with live broilers showed the highest risk (27.1 vs. 14.3%). Evidence for clonal transmission of ESBL-producing E. coli between humans and broilers was found on conventional farms, and horizontal gene transfer was suspected on both conventional and organic farms. Even without selection pressure from antibiotics ESBL-producing E. coli were able to transmit and persist in an organic broiler flock, which shows that broilers form a reservoir of antibiotic resistance genes. This leads to an increased risk of carriage of humans on farms through direct contact with broilers and possibly via the direct farm environment. As only a very small percentage of the general population is exposed to live broilers, direct contact with broilers does not appear to be important for carriage in the general human population.
- Subjects :
- disease transmission
antibiotic resistance
broilers
mens
animal diseases
Kwantitatieve Veterinaire Epidemiologie
vleeskuikens
epidemiologie
Quantitative Veterinary Epidemiology
antibioticaresistentie
ziekteoverdracht
bacteriën
poultry farming
man
WIAS
epidemiology
pluimveehouderij
bacteria
enterobacteriaceae
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.dris...00893..f164169bfa9061aab98e8040f6a49c58