Back to Search Start Over

Modeling cadmium in the feed chain and cattle organs

Source :
Biotechnology, Agronomy, Society and Enviroment. 15(Special issue 1):53-59
Publication Year :
2011

Abstract

The objectives of this study were to estimate cadmium contamination levels in different scenarios related to soil characteristics and assumptions regarding cadmium accumulation in the animal tissues, using quantitative supply chain modeling. The model takes into account soil cadmium levels, soil pH, soil-to-plant transfer, animal consumption patterns, and transfer into animal organs (liver and kidneys). The model was applied to cattle up to the age of six years which were fed roughage (maize and grass) and compound feed. Cadmium content in roughage and cadmium intake by cattle were calculated for six different (soil) scenarios varying in soil cadmium levels and soil pH. For each of the six scenarios, the carry-over of cadmium from intake into the cattle organs was estimated applying two model assumptions, i.e., linear accumulation and a steady state situation. The results showed that only in the most extreme soil scenario (cadmium level 2.5 mg.kg-1, pH 4.5), cadmium exceeded the EC maximum tolerated level in roughage. Assuming linear accumulation, cadmium levels in organs of cattle up to six years of age, ranged from 0.37-4.03 mg.kg-1 of fresh weight for kidneys and from 0.07 to 0.77 mg.kg-1 of fresh weight for livers. The maximum tolerated levels in one or both organs were exceeded in several scenarios. When considering organ excretion of cadmium, internal cadmium levels in organs were approximately one order of magnitude lower as compared to the results of the linear accumulation model. In this case only in the most extreme soil scenario, the maximum tolerated level in the kidney was exceeded. It was concluded that the difference between the two assumptions (linear model versus a steady state situation to estimate cadmium carry-over in cattle) is negligible in the animal’s first five years of life, but will become relevant at higher ages. For the current case, the linear approach is a good descriptor for worst case situations. Furthermore, this study showed that quantitative supply chain modeling is an effective tool in assessing whether or not a specific combination of soil properties would lead to unacceptable contaminant levels in feedstuffs and animal products in the view of animal and human health.

Details

Language :
English
ISSN :
13706233
Volume :
15
Issue :
Special issue 1
Database :
OpenAIRE
Journal :
Biotechnology, Agronomy, Society and Enviroment
Accession number :
edsair.dris...00893..3cfda97e9c7b5470cf8f0e0a9d04c1f4