Back to Search Start Over

Gearbox Failure Diagnosis Using a Multisensor Data-Fusion Machine-Learning-Based Approach

Authors :
Yassine Amirat
Mohamed Benbouzid
Tarak Benkedjouh
Houssem Habbouche
École Militaire Polytechnique [Alger] (EMP)
YNCREA OUEST (YO)
Energie et Systèmes Electromécaniques (LABISEN-ESE)
Laboratoire ISEN (L@BISEN)
Institut supérieur de l'électronique et du numérique (ISEN)-YNCREA OUEST (YO)-Institut supérieur de l'électronique et du numérique (ISEN)-YNCREA OUEST (YO)
Institut de Recherche Dupuy de Lôme (IRDL)
Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Centre National de la Recherche Scientifique (CNRS)
Source :
Entropy, Entropy, MDPI, 2021, 23 (6), pp.697. ⟨10.3390/e23060697⟩, Volume 23, Issue 6, Entropy, Vol 23, Iss 697, p 697 (2021)
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; Failure detection and diagnosis are of crucial importance for the reliable and safe operation of industrial equipment and systems, while gearbox failures are one of the main factors leading to long-term downtime. Condition-based maintenance addresses this issue using several expert systems for early failure diagnosis to avoid unplanned shutdowns. In this context, this paper provides a comparative study of two machine-learning-based approaches for gearbox failure diagnosis. The first uses linear predictive coefficients for signal processing and long short-term memory for learning, while the second is based on mel-frequency cepstral coefficients for signal processing, a convolutional neural network for feature extraction, and long short-term memory for classification. This comparative study proposes an improved predictive method using the early fusion technique of multisource sensing data. Using an experimental dataset, the proposals were tested, and their effectiveness was evaluated considering predictions based on statistical metrics.

Details

Language :
English
ISSN :
10994300
Database :
OpenAIRE
Journal :
Entropy, Entropy, MDPI, 2021, 23 (6), pp.697. ⟨10.3390/e23060697⟩, Volume 23, Issue 6, Entropy, Vol 23, Iss 697, p 697 (2021)
Accession number :
edsair.doi.dedup.....fffc97c75eb63b9f9ed9e16d41bda2dc