Back to Search Start Over

Sign rank versus VC dimension

Authors :
Alon, Noga
Moran, Shay
Yehudayoff, Amir
Publication Year :
2015
Publisher :
arXiv, 2015.

Abstract

This work studies the maximum possible sign rank of $N \times N$ sign matrices with a given VC dimension $d$. For $d=1$, this maximum is {three}. For $d=2$, this maximum is $\tilde{\Theta}(N^{1/2})$. For $d >2$, similar but slightly less accurate statements hold. {The lower bounds improve over previous ones by Ben-David et al., and the upper bounds are novel.} The lower bounds are obtained by probabilistic constructions, using a theorem of Warren in real algebraic topology. The upper bounds are obtained using a result of Welzl about spanning trees with low stabbing number, and using the moment curve. The upper bound technique is also used to: (i) provide estimates on the number of classes of a given VC dimension, and the number of maximum classes of a given VC dimension -- answering a question of Frankl from '89, and (ii) design an efficient algorithm that provides an $O(N/\log(N))$ multiplicative approximation for the sign rank. We also observe a general connection between sign rank and spectral gaps which is based on Forster's argument. Consider the $N \times N$ adjacency matrix of a $\Delta$ regular graph with a second eigenvalue of absolute value $\lambda$ and $\Delta \leq N/2$. We show that the sign rank of the signed version of this matrix is at least $\Delta/\lambda$. We use this connection to prove the existence of a maximum class $C\subseteq\{\pm 1\}^N$ with VC dimension $2$ and sign rank $\tilde{\Theta}(N^{1/2})$. This answers a question of Ben-David et al.~regarding the sign rank of large VC classes. We also describe limitations of this approach, in the spirit of the Alon-Boppana theorem. We further describe connections to communication complexity, geometry, learning theory, and combinatorics.<br />Comment: 33 pages. This is a revised version of the paper "Sign rank versus VC dimension". Additional results in this version: (i) Estimates on the number of maximum VC classes (answering a question of Frankl from '89). (ii) Estimates on the sign rank of large VC classes (answering a question of Ben-David et al. from '03). (iii) A discussion on the computational complexity of computing the sign-rank

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....fff15b4887ec98126e1fec84c92d7149
Full Text :
https://doi.org/10.48550/arxiv.1503.07648