Back to Search Start Over

Bioavailability of microcystin-LR in two different soil types to the legume Alfalfa Medicago sativa L

Authors :
Maranda Esterhuizen
Stephan Pflugmacher
Nicole Schmitner
Helsinki Institute of Sustainability Science (HELSUS)
Ecosystems and Environment Research Programme
Aquatic Ecotoxicology in an Urban Environment
Source :
International Journal of Environmental Science and Technology. 18:3845-3854
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

The adverse effects of exposure to microcystins in terrestrial crops have been well documented. However, the retention and bioavailability of microcystin-LR, one of the most prevalent cyanotoxins, from soil to plants, is poorly understood. In the present study, the amount of free microcystin-LR from two soil types, a silty sand and clayey loam, with exposure to three toxin concentrations and time was investigated. Using the two soil types, the effects on Medicago sativa (Alfalfa) growth after microcystin-LR exposure via irrigation with spiked water and pre-spiked soil was investigated and the amount of microcystin-LR taken up by the plant quantified. After 3 weeks of growth, the amount of free microcystin-LR remaining in the two soil types with each treatment was quantified. The results indicated that in clayey loam more microcystin-LR is bound to the soil. However, the growth of Alfalfa was only affected in the clayey loam with microcystin/LR exposure via irrigation. Nevertheless, microcystin-LR was detected in Alfalfa grown in both soil types exposed by both irrigation and via pre-spiked soil. Interestingly, more microcystin-LR remained in the silty sand after 3 weeks; yet, more microcystin-LR was taken up by the Alfalfa grown in the silty sand, with a larger concentration in the roots compared to the shoots. The results indicate that the soil type substantially influences the bioavailability and uptake of microcystin-LR and present some insight into the ecological risk posed by microcystin-LR.

Details

ISSN :
17352630 and 17351472
Volume :
18
Database :
OpenAIRE
Journal :
International Journal of Environmental Science and Technology
Accession number :
edsair.doi.dedup.....ffd744db2c80e3682cae011b935a14d1