Back to Search Start Over

Brain Transcriptional Responses to High-Fat Diet in Acads-Deficient Mice Reveal Energy Sensing Pathways

Authors :
Randall L. Mynatt
Brenda K. Richards
Claudia Kruger
K. Ganesh Kumar
Julia Volaufova
Source :
PLoS ONE, PLoS ONE, Vol 7, Iss 8, p e41709 (2012)
Publication Year :
2012
Publisher :
Public Library of Science, 2012.

Abstract

Background How signals from fatty acid metabolism are translated into changes in food intake remains unclear. Previously we reported that mice with a genetic inactivation of Acads (acyl-coenzyme A dehydrogenase, short-chain), the enzyme responsible for mitochondrial beta-oxidation of C4–C6 short-chain fatty acids (SCFAs), shift consumption away from fat and toward carbohydrate when offered a choice between diets. In the current study, we sought to indentify candidate genes and pathways underlying the effects of SCFA oxidation deficiency on food intake in Acads−/− mice. Methodology/Principal Findings We performed a transcriptional analysis of gene expression in brain tissue of Acads−/− and Acads+/+ mice fed either a high-fat (HF) or low-fat (LF) diet for 2 d. Ingenuity Pathway Analysis revealed three top-scoring pathways significantly modified by genotype or diet: oxidative phosphorylation, mitochondrial dysfunction, and CREB signaling in neurons. A comparison of statistically significant responses in HF Acads−/− vs. HF Acads+/+ (3917) and Acads+/+ HF vs. LF Acads+/+ (3879) revealed 2551 genes or approximately 65% in common between the two experimental comparisons. All but one of these genes were expressed in opposite direction with similar magnitude, demonstrating that HF-fed Acads-deficient mice display transcriptional responses that strongly resemble those of Acads+/+ mice fed LF diet. Intriguingly, genes involved in both AMP-kinase regulation and the neural control of food intake followed this pattern. Quantitative RT-PCR in hypothalamus confirmed the dysregulation of genes in these pathways. Western blotting showed an increase in hypothalamic AMP-kinase in Acads−/− mice and HF diet increased, a key protein in an energy-sensing cascade that responds to depletion of ATP. Conclusions Our results suggest that the decreased beta-oxidation of short-chain fatty acids in Acads-deficient mice fed HF diet produces a state of energy deficiency in the brain and that AMP-kinase may be the cellular energy-sensing mechanism linking fatty acid oxidation to feeding behavior in this model.

Details

Language :
English
ISSN :
19326203
Volume :
7
Issue :
8
Database :
OpenAIRE
Journal :
PLoS ONE
Accession number :
edsair.doi.dedup.....ffcad72cc06b7e0838b1321c58ae1dac