Back to Search Start Over

Disordered mesoporous carbon activated peroxydisulfate pretreatment facilitates disintegration of extracellular polymeric substances and anaerobic bioconversion of waste activated sludge

Authors :
Ruiliang Zhang
Yule Han
Yujie Tan
Guangyin Zhen
Chengxin Niu
Zhongyi Zhang
Teng Cai
Dilibaierkezi Kudisi
Xueqin Lu
Wanjiang Li
Source :
Bioresource Technology. 339:125547
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

The potential of disordered mesoporous carbon (DMC) as catalyst of peroxydisulfate (PDS) to improve sludge solubilization and methane production was investigated. Results showed that DMC activated PDS (DMC/PDS) to produce sulfate radicals (SO4 −), facilitating cells rupture and sludge matrix dissociation by degrading the carbonyl and amide groups in organic biopolymers (especially proteins, polysaccharides and humus). At the optimal DMC/PDS dosage of 0.04/1.2 g-mmol/g-VS, SCOD was increased from initial 294.0 to 681.5 mg/L, with the methane production rate of 12.6 mL/g-VS/day. Moreover, DMC could serve as electron mediator to accelerate electron transfer of microorganisms, building a more robust anaerobic metabolic environment. Modelling analysis further demonstrated the crucial role of DMC/PDS pretreatment in biological degradation and methane productivity. This study indicated that DMC/PDS pretreatment can prominently enhance the release of soluble substances and methane production, aiding the utilization of PDS oxidation technology for improving anaerobic bioconversion of sludge.

Details

ISSN :
09608524
Volume :
339
Database :
OpenAIRE
Journal :
Bioresource Technology
Accession number :
edsair.doi.dedup.....ffb90421affc8664c2f8d98b751a1a8d
Full Text :
https://doi.org/10.1016/j.biortech.2021.125547