Back to Search
Start Over
Rotational Spectroscopy of the NH3–H2 Molecular Complex
- Source :
- The Astrophysical Journal, 838, 1, pp. 1-7, The Astrophysical Journal, 838, 1-7
- Publication Year :
- 2017
-
Abstract
- We report the first high resolution spectroscopic study of the NH3–H2 van der Waals molecular complex. Three different experimental techniques, a molecular beam Fourier transform microwave spectrometer, a millimeter-wave intracavity jet OROTRON spectrometer, and a submillimeter-wave jet spectrometer with multipass cell, were used to detect pure rotational transitions of NH3–H2 in the wide frequency range from 39 to 230 GHz. Two nuclear spin species, (o)-NH3–(o)-H2 and (p)-NH3–(o)-H2, have been assigned as carriers of the observed lines on the basis of accompanying rovibrational calculations performed using the ab initio intermolecular potential energy surface (PES) of Maret et al. The experimental spectra were compared with the theoretical bound state results, thus providing a critical test of the quality of the NH3–H2 PES, which is a key issue for reliable computations of the collisional excitation and de-excitation of ammonia in the dense interstellar medium.
- Subjects :
- Physics
010304 chemical physics
Spectrometer
Ab initio
Astronomy and Astrophysics
Rotational–vibrational spectroscopy
01 natural sciences
Molecular physics
Spectral line
symbols.namesake
Nuclear magnetic resonance
Space and Planetary Science
0103 physical sciences
symbols
Rotational spectroscopy
van der Waals force
Theoretical Chemistry
010303 astronomy & astrophysics
Molecular beam
Collisional excitation
GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries)
Astrophysics::Galaxy Astrophysics
Subjects
Details
- ISSN :
- 0004637X
- Volume :
- 838
- Database :
- OpenAIRE
- Journal :
- The Astrophysical Journal
- Accession number :
- edsair.doi.dedup.....ff95008eedbed7008cda66187110e121