Back to Search Start Over

Rotational Spectroscopy of the NH3–H2 Molecular Complex

Authors :
A. van der Avoird
Thomas F. Giesen
Michael C. McCarthy
Leonid A Surin
I.V. Tarabukin
Alexander A. Breier
Stephan Schlemmer
Source :
The Astrophysical Journal, 838, 1, pp. 1-7, The Astrophysical Journal, 838, 1-7
Publication Year :
2017

Abstract

We report the first high resolution spectroscopic study of the NH3–H2 van der Waals molecular complex. Three different experimental techniques, a molecular beam Fourier transform microwave spectrometer, a millimeter-wave intracavity jet OROTRON spectrometer, and a submillimeter-wave jet spectrometer with multipass cell, were used to detect pure rotational transitions of NH3–H2 in the wide frequency range from 39 to 230 GHz. Two nuclear spin species, (o)-NH3–(o)-H2 and (p)-NH3–(o)-H2, have been assigned as carriers of the observed lines on the basis of accompanying rovibrational calculations performed using the ab initio intermolecular potential energy surface (PES) of Maret et al. The experimental spectra were compared with the theoretical bound state results, thus providing a critical test of the quality of the NH3–H2 PES, which is a key issue for reliable computations of the collisional excitation and de-excitation of ammonia in the dense interstellar medium.

Details

ISSN :
0004637X
Volume :
838
Database :
OpenAIRE
Journal :
The Astrophysical Journal
Accession number :
edsair.doi.dedup.....ff95008eedbed7008cda66187110e121