Back to Search
Start Over
On the maximal number of du Val singularities for a K3 surface
- Source :
- Geometriae Dedicata, 214, 383-388. Springer
- Publication Year :
- 2021
-
Abstract
- A complex K3 surface or an algebraic K3 surface in characteristics distinct from $2$ cannot have more than $16$ disjoint nodal curves.<br />A complex K3 surface or an algebraic K3 surface in characteristics distinct from 2 cannot have more than 16 disjoint nodal curves.
- Subjects :
- Pure mathematics
math.CV
Hyperbolic geometry
High Energy Physics::Lattice
Algebraic geometry
Disjoint sets
01 natural sciences
K3 surface
Mathematics - Algebraic Geometry
math.AG
0103 physical sciences
FOS: Mathematics
Complex Variables (math.CV)
0101 mathematics
Algebraic number
Algebraic Geometry (math.AG)
Topology (chemistry)
Mathematics
Projective geometry
Reed–Muller codes
Mathematics - Complex Variables
010102 general mathematics
Nodal curves
Differential geometry
010307 mathematical physics
Geometry and Topology
Subjects
Details
- Language :
- English
- ISSN :
- 00465755
- Volume :
- 214
- Database :
- OpenAIRE
- Journal :
- Geometriae Dedicata
- Accession number :
- edsair.doi.dedup.....ff6d8ff581f9246b67d7bbd09fd05ea4
- Full Text :
- https://doi.org/10.1007/s10711-021-00620-3