Back to Search
Start Over
Cholesterol-Lowering Gene Therapy Counteracts the Development of Non-ischemic Cardiomyopathy in Mice
- Publication Year :
- 2017
- Publisher :
- American Society of Gene & Cell Therapy, 2017.
-
Abstract
- A causal role of hypercholesterolemia in non-ischemic heart failure has never been demonstrated. Adeno-associated viral serotype 8 (AAV8)-low-density lipoprotein receptor (AAV8-LDLr) gene transfer was performed in LDLr-deficient mice without and with pressure overload induced by transverse aortic constriction (TAC). AAV8-LDLr gene therapy resulted in an 82.8% (p < 0.0001) reduction of plasma cholesterol compared with controls. Mortality rate was lower (p < 0.05) in AAV8-LDLr TAC mice compared with control TAC mice (hazard ratio for mortality 0.457, 95% confidence interval [CI] 0.237-0.882) during 8 weeks of follow-up. AAV8-LDLr gene therapy attenuated cardiac hypertrophy, reduced interstitial and perivascular fibrosis, and decreased lung congestion in TAC mice. Cardiac function, quantified by invasive hemodynamic measurements and magnetic resonance imaging, was significantly improved 8 weeks after sham operation or after TAC in AAV8-LDLr mice compared with respective control groups. Myocardial protein levels of mammalian target of rapamycin and of acetyl-coenzyme A carboxylase were strikingly decreased following cholesterol lowering in mice without and with pressure overload. AAV8-LDLr therapy potently reduced cardiac glucose uptake and counteracted metabolic remodeling following pressure overload. Furthermore, oxidative stress and myocardial apoptosis were decreased following AAV8-LDLr therapy in mice with pressure overload. In conclusion, cholesterol-lowering gene therapy potently counteracts structural and metabolic remodeling, and enhances cardiac function. ispartof: Molecular Therapy vol:25 issue:11 pages:2513-2525 ispartof: location:United States status: published
- Subjects :
- 0301 basic medicine
Cardiac function curve
medicine.medical_specialty
Genetic enhancement
Glucose uptake
030204 cardiovascular system & hematology
Biology
medicine.disease_cause
03 medical and health sciences
0302 clinical medicine
Internal medicine
Drug Discovery
Genetics
medicine
Humans
Molecular Biology
Pharmacology
Pressure overload
Heart Failure
Cholesterol, LDL
Genetic Therapy
medicine.disease
030104 developmental biology
Endocrinology
Cholesterol
Receptors, LDL
Heart failure
LDL receptor
Molecular Medicine
lipids (amino acids, peptides, and proteins)
Original Article
Oxidative stress
Lipoprotein
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....ff6987ebc1980e5768ab51b5ecb415ea