Back to Search Start Over

Decoupling Global and Local Representations via Invertible Generative Flows

Authors :
Ma, Xuezhe
Kong, Xiang
Zhang, Shanghang
Hovy, Eduard
Publication Year :
2020
Publisher :
arXiv, 2020.

Abstract

In this work, we propose a new generative model that is capable of automatically decoupling global and local representations of images in an entirely unsupervised setting, by embedding a generative flow in the VAE framework to model the decoder. Specifically, the proposed model utilizes the variational auto-encoding framework to learn a (low-dimensional) vector of latent variables to capture the global information of an image, which is fed as a conditional input to a flow-based invertible decoder with architecture borrowed from style transfer literature. Experimental results on standard image benchmarks demonstrate the effectiveness of our model in terms of density estimation, image generation and unsupervised representation learning. Importantly, this work demonstrates that with only architectural inductive biases, a generative model with a likelihood-based objective is capable of learning decoupled representations, requiring no explicit supervision. The code for our model is available at https://github.com/XuezheMax/wolf.<br />Comment: Camera-ready at ICLR 2021. 23 pages (plus appendix), 16 figures, 5 tables. Due to arxiv size constraints, this version is using downscaled images. Please download the full-resolution version from https://vixra.org/abs/2004.0222

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....ff4b4e7d7b7c79b909f1129602a995a5
Full Text :
https://doi.org/10.48550/arxiv.2004.11820