Back to Search Start Over

AT-533, a novel Hsp90 inhibitor, inhibits breast cancer growth and HIF-1α/VEGF/VEGFR-2-mediated angiogenesis in vitro and in vivo

Authors :
Yan-Yan Ma
Yan Wang
Hongyuan Chen
Liang-Shun Fu
Min Liu
Man-Mei Li
Xuyan Tian
Wang Yifei
Xiao Liu
Hong-Tao Sun
Zhong Liu
Peng-Chao Zhang
Source :
Biochemical Pharmacology. 172:113771
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

The inhibition of angiogenesis is suggested to be an attractive strategy for cancer therapeutics. Heat shock protein 90 (Hsp90) is closely related to tumorigenesis as it regulates the stabilization and activated states of many client proteins that are essential for cell survival and tumor growth. Here, we investigated the mechanism whereby AT-533, a novel Hsp90 inhibitor, inhibits breast cancer growth and tumor angiogenesis. Based on our results, AT-533 suppressed the tube formation, cell migration, and invasion of human umbilical vein endothelial cells (HUVECs), and was more effective than the Hsp90 inhibitor, 17-AAG. Furthermore, AT-533 inhibited angiogenesis in the aortic ring, Matrigel plug, and chorioallantoic membrane (CAM) models. Mechanically, AT-533 inhibited the activation of VEGFR-2 and the downstream pathways, including Akt/mTOR/p70S6K, Erk1/2 and FAK, in HUVECs, and the viability of breast cancer cells and the HIF-1α/VEGF signaling pathway under hypoxia. In vivo, AT-533 also inhibited tumor growth and angiogenesis by inducing apoptosis and the HIF-1α/VEGF signaling pathway in breast cancer cells. Taken together, our findings indicate that the Hsp90 inhibitor, AT-533, suppresses breast cancer growth and angiogenesis by blocking the HIF-1α/VEGF/VEGFR-2 signaling pathway. AT-533 may thus be a potentially useful drug candidate for breast cancer therapy.

Details

ISSN :
00062952
Volume :
172
Database :
OpenAIRE
Journal :
Biochemical Pharmacology
Accession number :
edsair.doi.dedup.....ff31c96bd915836e7aa80f94c519c673