Back to Search Start Over

Direct observation of subpicosecond vibrational dynamics in photoexcited myoglobin

Authors :
E. Pontecorvo
Giulio Cerullo
Marten H. Vos
Carino Ferrante
Tullio Scopigno
Dipartimento di Fisica [Roma La Sapienza]
Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome]
Dipartimento di Fisica [Politecnico Milano]
Politecnico di Milano [Milan] (POLIMI)
Laboratoire d'Optique et Biosciences (LOB)
École polytechnique (X)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Istituto Italiano di Tecnologia (IIT)
Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA)
Dipartimento di Fisica [Politecnico Milano] (POLIMI)
Roura, Denis
Source :
Nature Chemistry, Nature Chemistry, Nature Publishing Group, 2016, pp.1137-1143 ⟨10.1038/nchem.2569⟩, Nature Chemistry, 2016, 8, pp.1137-1143 ⟨10.1038/nchem.2569⟩
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

International audience; Determining the initial pathway for ultrafast energy redistribution within biomolecules is a challenge, and haem proteins, for which energy can be deposited locally in the haem moiety using short light pulses, are suitable model systems to address this issue. However, data acquired using existing experimental techniques that fail to combine sufficient structural sensitivity with adequate time resolution have resulted in alternative hypotheses concerning the interplay between energy flow among highly excited vibrational levels and potential concomitant electronic processes. By developing a femtosecond-stimulated Raman set-up, endowed with the necessary tunability to take advantage of different resonance conditions, here we visualize the temporal evolution of energy redistribution over different vibrational modes in myoglobin. We establish that the vibrational energy initially stored in the highly excited Franck–Condon manifold is transferred with different timescales into low- and high-frequency modes, prior to slow dissipation through the protein. These findings demonstrate that a newly proposed mechanism involving the population dynamics of specific vibrational modes settles the controversy on the existence of transient electronic intermediates.

Details

Language :
English
ISSN :
17554330
Database :
OpenAIRE
Journal :
Nature Chemistry, Nature Chemistry, Nature Publishing Group, 2016, pp.1137-1143 ⟨10.1038/nchem.2569⟩, Nature Chemistry, 2016, 8, pp.1137-1143 ⟨10.1038/nchem.2569⟩
Accession number :
edsair.doi.dedup.....ff2eca3117cc4fe6e884caf2a3226ded
Full Text :
https://doi.org/10.1038/nchem.2569⟩