Back to Search Start Over

High colloidal stability ZnO nanoparticles independent on solvent polarity and their application in polymer solar cells

Authors :
Song Yi Park
Jin Young Kim
Jae Won Kim
Dong Suk Kim
Jaeki Jeong
Jungwoo Heo
Jongnam Park
Woojin Lee
Na Gyeong An
Yung Jin Yoon
Yun Seop Shin
Jiwoo Yeop
Source :
Scientific Reports, Vol 10, Iss 1, Pp 1-10 (2020), Scientific Reports
Publication Year :
2020
Publisher :
Nature Publishing Group, 2020.

Abstract

Significant aggregation between ZnO nanoparticles (ZnO NPs) dispersed in polar and nonpolar solvents hinders the formation of high quality thin film for the device application and impedes their excellent electron transporting ability. Herein a bifunctional coordination complex, titanium diisopropoxide bis(acetylacetonate) (Ti(acac)2) is employed as efficient stabilizer to improve colloidal stability of ZnO NPs. Acetylacetonate functionalized ZnO exhibited long-term stability and maintained its superior optical and electrical properties for months aging under ambient atmospheric condition. The functionalized ZnO NPs were then incorporated into polymer solar cells with conventional structure as n-type buffer layer. The devices exhibited nearly identical power conversion efficiency regardless of the use of fresh and old (2 months aged) NPs. Our approach provides a simple and efficient route to boost colloidal stability of ZnO NPs in both polar and nonpolar solvents, which could enable structure-independent intense studies for efficient organic and hybrid optoelectronic devices.

Details

Language :
English
ISSN :
20452322
Volume :
10
Issue :
1
Database :
OpenAIRE
Journal :
Scientific Reports
Accession number :
edsair.doi.dedup.....ff2db6eb68bfd692fe0e997f4dde03ea