Back to Search Start Over

Multiplexed single-cell transcriptional response profiling to define cancer vulnerabilities and therapeutic mechanism of action

Authors :
William Colgan
Itay Tirosh
Emily Chambers
Andrew Jones
James M. McFarland
Jennifer Roth
Aviad Tsherniak
Michael V. Rothberg
Samantha Bender
Todd R. Golub
Kathryn Geiger-Schuller
Francisca Vazquez
Mahmoud Ghandi
Andrew J. Aguirre
Allison Warren
Olena Kuksenko
Aviv Regev
Orit Rozenblatt-Rosen
Brenton R. Paolella
Danielle Dionne
Tsukasa Shibue
Brian M. Wolpin
Source :
Nature Communications, Vol 11, Iss 1, Pp 1-15 (2020), Nature Communications
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

Assays to study cancer cell responses to pharmacologic or genetic perturbations are typically restricted to using simple phenotypic readouts such as proliferation rate. Information-rich assays, such as gene-expression profiling, have generally not permitted efficient profiling of a given perturbation across multiple cellular contexts. Here, we develop MIX-Seq, a method for multiplexed transcriptional profiling of post-perturbation responses across a mixture of samples with single-cell resolution, using SNP-based computational demultiplexing of single-cell RNA-sequencing data. We show that MIX-Seq can be used to profile responses to chemical or genetic perturbations across pools of 100 or more cancer cell lines. We combine it with Cell Hashing to further multiplex additional experimental conditions, such as post-treatment time points or drug doses. Analyzing the high-content readout of scRNA-seq reveals both shared and context-specific transcriptional response components that can identify drug mechanism of action and enable prediction of long-term cell viability from short-term transcriptional responses to treatment.<br />Large-scale screens of chemical and genetic vulnerabilities in cancer are typically limited to simple readouts of cell viability. Here, the authors develop a method for profiling post-perturbation transcriptional responses across large pools of cancer cell lines, enabling deep characterization of shared and context-specific responses.

Details

ISSN :
20411723
Volume :
11
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....fec36ee579d1fcfd5173d20cdf8331e0