Back to Search Start Over

Mapping the Functional Assessment of Cancer Therapy-General or -Colorectal to SF-6D in Chinese Patients with Colorectal Neoplasm

Authors :
Janice Tsang
Ka-Ping Ma
Pierre Chan
Wai Lun Law
Donna Rowen
Cindy L. K. Lam
Carlos K. H. Wong
Jensen T. C. Poon
Sarah M. McGhee
Dora L.W. Kwong
Source :
Value in Health. 15:495-503
Publication Year :
2012
Publisher :
Elsevier BV, 2012.

Abstract

Objectives To map Functional Assessment of Cancer Therapy-General (FACT-G) and Functional Assessment of Cancer Therapy-Colorectal (FACT-C) subscale scores onto six-dimensional health state short form (derived from short form 36 health survey) (SF-6D) preference-based values in patients with colorectal neoplasm, with and without adjustment for clinical and demographic characteristics. These results can then be applied to studies that have used FACT-G or FACT-C to predict SF-6D utility values to inform economic evaluation. Methods Ordinary least square regressions were estimated mapping FACT-G and FACT-C onto SF-6D by using cross-sectional data of 537 Chinese subjects with different stages of colorectal neoplasm. Mapping functions for SF-6D preference-based values were developed separately for FACT-G and FACT-C in four sequential models for addition of variables: 1) main-effect terms, 2) squared terms, 3) interaction terms, and 4) clinical and demographic variables. Predictive performance in each model was assessed by the R 2 , adjusted R 2 , predicted R 2 , information criteria (Akaike information criteria and Bayesian information criteria), the root mean square error, the mean absolute error, and the proportions of absolute error within the threshold of 0.05 and 0.10. Results Models including FACT variables and clinical and demographic variables had the best predictive performance measured by using R 2 (FACT-G: 59.98%; FACT-C: 60.43%), root mean square error (FACT-G: 0.086; FACT-C: 0.084), and mean absolute error (FACT-G: 0.065; FACT-C: 0.065). The FACT-C–based mapping function had better predictive ability than did the FACT-G–based mapping function. Conclusions Models mapping FACT-G and FACT-C onto SF-6D reached an acceptable degree of precision. Mapping from the condition-specific measure (FACT-C) had better performance than did mapping from the general cancer measure (FACT-G). These mapping functions can be applied to FACT-G or FACT-C data sets to estimate SF-6D utility values for economic evaluation of medical interventions for patients with colorectal neoplasm. Further research assessing model performance in independent data sets and non-Chinese populations are encouraged.

Details

ISSN :
10983015
Volume :
15
Database :
OpenAIRE
Journal :
Value in Health
Accession number :
edsair.doi.dedup.....feab51d88ee9e2263a7326a84d7d5d25
Full Text :
https://doi.org/10.1016/j.jval.2011.12.009