Back to Search Start Over

Radiosynthesis and in vivo Evaluation of Carbon-11 (2S)-3-(1H-Indol-3-yl)-2-{[(4-methoxyphenyl)carbamoyl]amino}-N-{[1-(5-methoxypyridin-2-yl)cyclohexyl]methyl}propanamide: An Attempt to Visualize Brain Formyl Peptide Receptors in Mouse Models of Neuroinfl

Authors :
Masayuki Fujinaga
Marcello Leopoldo
Akiko Hatori
Roberto Perrone
Makoto Higuchi
Ming-Rong Zhang
Madia Letizia Stama
Nicola Antonio Colabufo
Tetsuya Suhara
Enza Lacivita
Jun Maeda
Source :
Chemistry & Biodiversity. 13:875-883
Publication Year :
2016
Publisher :
Wiley, 2016.

Abstract

Here, we describe the very first attempt to visualize in vivo formyl peptide receptors (FPRs) in mouse brain by positron emission tomography (PET). FPRs are expressed in microglial cells where they mediate chemotactic activity of β-amyloid peptide in Alzheimer disease and, thus, are involved in neuroinflammatory processes. To this purpose, we have selected (2S)-3-(1H-Indol-3-yl)-2-{[(4-methoxyphenyl)carbamoyl]amino}-N-{[1-(5-methoxypyridin-2-yl)cyclohexyl]methyl}propanamide ((S)-1), that we have previously identified as a potent non-peptidic FPR agonist. (S)-[(11) C]-1 has been prepared in high radiochemical yield. (S)-[(11) C]-1 showed very low penetration of blood-brain barrier and, thus, was unable to accumulate into the brain. In addition, (S)-[(11) C]-1 was not able to label FPRs receptors in brain slices of PS19 and APP23 mice, two animal models of Alzheimer disease. Although (S)-[(11) C]-1 was not suitable to visualize FPRs in the brain, this study provides useful information for the design and characterization of future potential PET radioligands for visualization of brain FPRs by PET.

Details

ISSN :
16121872
Volume :
13
Database :
OpenAIRE
Journal :
Chemistry & Biodiversity
Accession number :
edsair.doi.dedup.....fe99fb1c855820145a74cbbe16534a1c
Full Text :
https://doi.org/10.1002/cbdv.201500281