Back to Search Start Over

Periodic solutions of the forced pendulum equation with friction

Authors :
Pablo Amster
Maria C. Mariani
Source :
Bulletin de la Classe des sciences. 14:311-320
Publication Year :
2003
Publisher :
PERSEE Program, 2003.

Abstract

This paper is devoted to the study of the general forced pendulum equation in the presence of friction, u" + a(t)u' + b(t) sin u = f(t) with a, b ∈ C([0, T]) and ƒ ∈ L2(0, T). We apply a Lyapunov-Schmidt reduction in order to obtain T-periodic solutions as zeroes of a 2π-periodic continuous real function under appropriate conditions on a, b and ƒ.<br />Amster Pablo, Mariani Maria Cristina. Periodic solutions of the forced pendulum equation with friction. In: Bulletin de la Classe des sciences, tome 14, n°7-12, 2003. pp. 311-320.

Details

ISSN :
00014141
Volume :
14
Database :
OpenAIRE
Journal :
Bulletin de la Classe des sciences
Accession number :
edsair.doi.dedup.....fe98f20055933bf27102316a091f7efb
Full Text :
https://doi.org/10.3406/barb.2003.28380