Back to Search Start Over

Immunoprofiling of Severity and Stage of Bacterial Infectious Diseases by Ultrabright Fluorescent Nanosphere-Based Dyad Test Strips

Authors :
Juanzu Liu
Leping Lin
Peiyu Yao
Wei Zhao
Jiao Hu
Xue-Hui Shi
Shiwu Zhang
Xiaobo Zhu
Dai-Wen Pang
An-An Liu
Source :
Analytical Chemistry. 94:8818-8826
Publication Year :
2022
Publisher :
American Chemical Society (ACS), 2022.

Abstract

Bacterial infectious diseases are common clinical diseases that seriously threaten human health, especially in countries and regions with poor environmental hygiene. Due to the lack of characteristic clinical symptoms and signs, it is a challenge to distinguish a bacterial infection from other infections, leading to misdiagnosis and antibiotic overuse. Therefore, there is an urgent need to develop a specific method for detection of bacterial infections. Herein, utilizing ultrabright fluorescent nanospheres (FNs) as reporters, immunochromatographic dyad test strips are developed for the early detection of bacterial infections and distinction of different stages of bacterial infectious diseases in clinical samples. C-reactive protein (CRP) and heparin-binding protein (HBP) are quantified and assayed because their levels in plasma are varied dynamically and asynchronously during the progression of the disease. The detection limits of CRP and HBP can reach as low as 0.51 and 0.65 ng/mL, respectively, due to the superior fluorescence intensity of each FN, which is 570 times stronger than that of a single quantum dot. The assay procedure can be achieved in 22 min, fully meeting the needs of rapid and ultrasensitive detection in the field. This constructed strip has been successfully used to profile the stage and severity of bacterial infections by monitoring the levels of CRP and HBP in human plasma samples, showing great potential as a point-of-care biosensor for clinical diagnosis. In addition to bacterial infections, the developed ultrabright FN-based point-of-care testing can be readily expanded for rapid, quantitative, and ultrasensitive detection of other trace substances in complex systems.

Details

ISSN :
15206882 and 00032700
Volume :
94
Database :
OpenAIRE
Journal :
Analytical Chemistry
Accession number :
edsair.doi.dedup.....fe7453dfc0b3b5274ebe5a4c26e859d2