Back to Search Start Over

Non-backtracking spectra of weighted inhomogeneous random graphs

Authors :
Stephan, Ludovic
Massouli��, Laurent
Dynamics of Geometric Networks (DYOGENE)
Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Département d'informatique - ENS Paris (DI-ENS)
Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Sorbonne Université (SU)
Microsoft Research - Inria Joint Centre (MSR - INRIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Microsoft Research Laboratory Cambridge-Microsoft Corporation [Redmond, Wash.]
Département d'informatique - ENS Paris (DI-ENS)
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)
Département d'informatique de l'École normale supérieure (DI-ENS)
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

We study a model of random graphs where each edge is drawn independently (but not necessarily identically distributed) from the others, and then assigned a random weight. When the mean degree of such a graph is low, it is known that the spectrum of the adjacency matrix $A$ deviates significantly from that of its expected value $\mathbb E A$. In contrast, we show that over a wide range of parameters the top eigenvalues of the non-backtracking matrix $B$ -- a matrix whose powers count the non-backtracking walks between two edges -- are close to those of $\mathbb E A$, and all other eigenvalues are confined in a bulk with known radius. We also obtain a precise characterization of the scalar product between the eigenvectors of $B$ and their deterministic counterparts derived from the model parameters. This result has many applications, in domains ranging from (noisy) matrix completion to community detection, as well as matrix perturbation theory. In particular, we establish as a corollary that a result known as the Baik-Ben Arous-P\'ech\'e phase transition, previously established only for rotationally invariant random matrices, holds more generally for matrices $A$ as above under a mild concentration hypothesis.<br />Comment: 60 pages

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....fe70f6e94d728ed0eac63a7f59afebb9