Back to Search Start Over

AI-assisted Optimization of the ECCE Tracking System at the Electron Ion Collider

Authors :
C. Fanelli
Z. Papandreou
K. Suresh
J.K. Adkins
Y. Akiba
A. Albataineh
M. Amaryan
I.C. Arsene
C. Ayerbe Gayoso
J. Bae
X. Bai
M.D. Baker
M. Bashkanov
R. Bellwied
F. Benmokhtar
V. Berdnikov
J.C. Bernauer
F. Bock
W. Boeglin
M. Borysova
E. Brash
P. Brindza
W.J. Briscoe
M. Brooks
S. Bueltmann
M.H.S. Bukhari
A. Bylinkin
R. Capobianco
W.-C. Chang
Y. Cheon
K. Chen
K.-F. Chen
K.-Y. Cheng
M. Chiu
T. Chujo
Z. Citron
E. Cline
E. Cohen
T. Cormier
Y. Corrales Morales
C. Cotton
J. Crafts
C. Crawford
S. Creekmore
C. Cuevas
J. Cunningham
G. David
C.T. Dean
M. Demarteau
S. Diehl
N. Doshita
R. Dupré
J.M. Durham
R. Dzhygadlo
R. Ehlers
L. El Fassi
A. Emmert
R. Ent
R. Fatemi
S. Fegan
M. Finger
J. Frantz
M. Friedman
I. Friscic
D. Gangadharan
S. Gardner
K. Gates
F. Geurts
R. Gilman
D. Glazier
E. Glimos
Y. Goto
N. Grau
S.V. Greene
A.Q. Guo
L. Guo
S.K. Ha
J. Haggerty
T. Hayward
X. He
O. Hen
D.W. Higinbotham
M. Hoballah
T. Horn
A. Hoghmrtsyan
P.-h.J. Hsu
J. Huang
G. Huber
A. Hutson
K.Y. Hwang
C.E. Hyde
M. Inaba
T. Iwata
H.S. Jo
K. Joo
N. Kalantarians
G. Kalicy
K. Kawade
S.J.D. Kay
A. Kim
B. Kim
C. Kim
M. Kim
Y. Kim
E. Kistenev
V. Klimenko
S.H. Ko
I. Korover
W. Korsch
G. Krintiras
S. Kuhn
C.-M. Kuo
T. Kutz
J. Lajoie
D. Lawrence
S. Lebedev
H. Lee
J.S.H. Lee
S.W. Lee
Y.-J. Lee
W. Li
W.B. Li
X. Li
Y.T. Liang
S. Lim
C.-H. Lin
D.X. Lin
K. Liu
M.X. Liu
K. Livingston
N. Liyanage
W.J. Llope
C. Loizides
E. Long
R.-S. Lu
Z. Lu
W. Lynch
S. Mantry
D. Marchand
M. Marcisovsky
C. Markert
P. Markowitz
H. Marukyan
P. McGaughey
M. Mihovilovic
R.G. Milner
A. Milov
Y. Miyachi
A. Mkrtchyan
P. Monaghan
R. Montgomery
D. Morrison
A. Movsisyan
H. Mkrtchyan
C. Munoz Camacho
M. Murray
K. Nagai
J. Nagle
I. Nakagawa
C. Nattrass
D. Nguyen
S. Niccolai
R. Nouicer
G. Nukazuka
M. Nycz
V.A. Okorokov
S. Orešić
J.D. Osborn
C. O’Shaughnessy
S. Paganis
S.F. Pate
M. Patel
C. Paus
G. Penman
M.G. Perdekamp
D.V. Perepelitsa
H. Periera da Costa
K. Peters
W. Phelps
E. Piasetzky
C. Pinkenburg
I. Prochazka
T. Protzman
M.L. Purschke
J. Putschke
J.R. Pybus
R. Rajput-Ghoshal
J. Rasson
B. Raue
K.F. Read
K. Røed
R. Reed
J. Reinhold
E.L. Renner
J. Richards
C. Riedl
T. Rinn
J. Roche
G.M. Roland
G. Ron
M. Rosati
C. Royon
J. Ryu
S. Salur
N. Santiesteban
R. Santos
M. Sarsour
J. Schambach
A. Schmidt
N. Schmidt
C. Schwarz
J. Schwiening
R. Seidl
A. Sickles
P. Simmerling
S. Sirca
D. Sharma
Z. Shi
T.-A. Shibata
C.-W. Shih
S. Shimizu
U. Shrestha
K. Slifer
K. Smith
D. Sokhan
R. Soltz
W. Sondheim
J. Song
I.I. Strakovsky
P. Steinberg
P. Stepanov
J. Stevens
J. Strube
P. Sun
X. Sun
V. Tadevosyan
W.-C. Tang
S. Tapia Araya
S. Tarafdar
L. Teodorescu
D. Thomas
A. Timmins
L. Tomasek
N. Trotta
R. Trotta
T.S. Tveter
E. Umaka
A. Usman
H.W. van Hecke
C. Van Hulse
J. Velkovska
E. Voutier
P.K. Wang
Q. Wang
Y. Wang
D.P. Watts
N. Wickramaarachchi
L. Weinstein
M. Williams
C.-P. Wong
L. Wood
M.H. Wood
C. Woody
B. Wyslouch
Z. Xiao
Y. Yamazaki
Y. Yang
Z. Ye
H.D. Yoo
M. Yurov
N. Zachariou
W.A. Zajc
W. Zha
J.-L. Zhang
J.-X. Zhang
Y. Zhang
Y.-X. Zhao
X. Zheng
P. Zhuang
HEP, INSPIRE
Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab)
Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Institut de Physique Nucléaire d'Orsay (IPNO)
Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
Source :
Nucl.Instrum.Meth.A, 15th Pisa Meeting on Advanced Detectors, 15th Pisa Meeting on Advanced Detectors, May 2022, La Biodola, Italy. pp.167748, ⟨10.1016/j.nima.2022.167748⟩
Publication Year :
2022

Abstract

The Electron-Ion Collider (EIC) is a cutting-edge accelerator facility that will study the nature of the "glue" that binds the building blocks of the visible matter in the universe. The proposed experiment will be realized at Brookhaven National Laboratory in approximately 10 years from now, with detector design and R&D currently ongoing. Notably, EIC is one of the first large-scale facilities to leverage Artificial Intelligence (AI) already starting from the design and R&D phases. The EIC Comprehensive Chromodynamics Experiment (ECCE) is a consortium that proposed a detector design based on a 1.5T solenoid. The EIC detector proposal review concluded that the ECCE design will serve as the reference design for an EIC detector. Herein we describe a comprehensive optimization of the ECCE tracker using AI. The work required a complex parametrization of the simulated detector system. Our approach dealt with an optimization problem in a multidimensional design space driven by multiple objectives that encode the detector performance, while satisfying several mechanical constraints. We describe our strategy and show results obtained for the ECCE tracking system. The AI-assisted design is agnostic to the simulation framework and can be extended to other sub-detectors or to a system of sub-detectors to further optimize the performance of the EIC detector.<br />16 pages, 18 figures, 2 appendices, 3 tables

Details

Language :
English
Database :
OpenAIRE
Journal :
Nucl.Instrum.Meth.A, 15th Pisa Meeting on Advanced Detectors, 15th Pisa Meeting on Advanced Detectors, May 2022, La Biodola, Italy. pp.167748, ⟨10.1016/j.nima.2022.167748⟩
Accession number :
edsair.doi.dedup.....fe5a77a4a092151a35d6bd28b55f86ec
Full Text :
https://doi.org/10.1016/j.nima.2022.167748⟩