Back to Search
Start Over
Regulation of cyclin D1 by arsenic and microRNA inhibits adipogenesis
- Source :
- Toxicology Letters. 265:147-155
- Publication Year :
- 2017
- Publisher :
- Elsevier BV, 2017.
-
Abstract
- Low-dose chronic exposure to arsenic in drinking water represents a global public health concern with established risks for metabolic and cardiovascular disease, as well as cancer. While the linkage between arsenic and disease is strong, further understanding of the molecular mechanisms of its pathogenicity is required. Previous reports demonstrated the ability of arsenic to interfere with adipogenesis, which may mediate its effects in promoting metabolic disease. We hypothesized that microRNA are important regulators of most if not all mesenchymal stem cell processes that are dysregulated by arsenic exposure to impair lipogenesis. Arsenic increased the expression of miR-29b in white adipose tissue, as well as human mesenchymal stem cells (hMSCs) isolated from adipose tissue. Exposing hMSCs to arsenic increased abundance of miR-29b and cyclin D1 to promote proliferation over differentiation. Paradoxically, inhibition of miR-29b enhanced the inhibitory effect of arsenic on differentiation. This paradox was attributed to a requirement for miR-29 in regulating cyclin D1 expression as stable inhibition of miR-29b eliminated the cyclic pattern of cyclin D1 expression. Temporal regulation of cyclin D1 is critical for adipogenic differentiation, and the data suggest a paradigm where arsenic disruption of miR-29b regulatory pathways impairs adipogenic differentiation and ultimately adipose metabolic homeostasis.
- Subjects :
- Male
0301 basic medicine
Arsenites
Cell Culture Techniques
Adipose tissue
White adipose tissue
Biology
Toxicology
Article
03 medical and health sciences
Cyclin D1
microRNA
Animals
Humans
Cells, Cultured
Regulation of gene expression
Adipogenesis
Mesenchymal stem cell
Mesenchymal Stem Cells
General Medicine
Mice, Inbred C57BL
Arsenic contamination of groundwater
MicroRNAs
030104 developmental biology
Gene Expression Regulation
Cancer research
Water Pollutants, Chemical
Subjects
Details
- ISSN :
- 03784274
- Volume :
- 265
- Database :
- OpenAIRE
- Journal :
- Toxicology Letters
- Accession number :
- edsair.doi.dedup.....fe59fffbebb7817f920f0fb2ad2a14ed
- Full Text :
- https://doi.org/10.1016/j.toxlet.2016.12.002