Back to Search Start Over

Vowel recognition with four coupled spin-torque nano-oscillators

Authors :
Vincent Cros
Juan Trastoy
Shinji Yuasa
Kay Yakushiji
Tifenn Hirtzlin
Akio Fukushima
M. Romera
Julie Grollier
Damir Vodenicarevic
Sumito Tsunegi
Damien Querlioz
Hitoshi Kubota
Paolo Bortolotti
Philippe Talatchian
Flavio Abreu Araujo
Nicolas Locatelli
Maxence Ernoult
Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES)
THALES-Centre National de la Recherche Scientifique (CNRS)
Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences (IMCN)
Université Catholique de Louvain = Catholic University of Louvain (UCL)
Laboratoire de physique de la matière condensée (LPMC)
École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
Centre de Nanosciences et de Nanotechnologies [Orsay] (C2N)
Université Paris-Sud - Paris 11 (UP11)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Institut d'électronique fondamentale (IEF)
Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
Source :
Nature, Nature, Nature Publishing Group, 2018, 563 (7730), pp.230-234. ⟨10.1038/s41586-018-0632-y⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

Substantial evidence indicates that the brain uses principles of non-linear dynamics in neural processes, providing inspiration for computing with nanoelectronic devices. However, training neural networks composed of dynamical nanodevices requires finely controlling and tuning their coupled oscillations. In this work, we show that the outstanding tunability of spintronic nano-oscillators can solve this challenge. We successfully train a hardware network of four spin-torque nano-oscillators to recognize spoken vowels by tuning their frequencies according to an automatic real-time learning rule. We show that the high experimental recognition rates stem from the high frequency tunability of the oscillators and their mutual coupling. Our results demonstrate that non-trivial pattern classification tasks can be achieved with small hardware neural networks by endowing them with non-linear dynamical features: here, oscillations and synchronization. This demonstration is a milestone for spintronics-based neuromorphic computing.

Details

Language :
English
ISSN :
00280836 and 14764679
Database :
OpenAIRE
Journal :
Nature, Nature, Nature Publishing Group, 2018, 563 (7730), pp.230-234. ⟨10.1038/s41586-018-0632-y⟩
Accession number :
edsair.doi.dedup.....fe4e33a1e3a3f272d8082b4c1d6225b6
Full Text :
https://doi.org/10.1038/s41586-018-0632-y⟩