Back to Search Start Over

An amino acid mixture improves glucose tolerance and insulin signaling in Sprague-Dawley rats

Authors :
Chung-Yu Chen
Jeffrey L. Nelson
John L. Ivy
Daisuke Hara
Zhenping Ding
Jeffrey R. Bernard
Yi-Hung Liao
Source :
American journal of physiology. Endocrinology and metabolism. 300(4)
Publication Year :
2011

Abstract

The aims of this investigation were to evaluate the effect of an amino acid supplement on the glucose response to an oral glucose challenge ( experiment 1) and to evaluate whether differences in blood glucose response were associated with increased skeletal muscle glucose uptake ( experimental 2). Experiment 1 rats were gavaged with either glucose (CHO), glucose plus an amino acid mixture (CHO-AA-1), glucose plus an amino acid mixture with increased leucine concentration (CHO-AA-2), or water (PLA). CHO-AA-1 and CHO-AA-2 had reduced blood glucose responses compared with CHO, with no difference in insulin among these treatments. Experiment 2 rats were gavaged with either CHO or CHO-AA-1. Fifteen minutes after gavage, a bolus containing 2-[3H]deoxyglucose and [U-14C]mannitol was infused via a tail vein. Blood glucose was significantly lower in CHO-AA-1 than in CHO, whereas insulin responses were similar. Muscle glucose uptake was higher in CHO-AA-1 compared with CHO in both fast-twitch red (8.36 ± 1.3 vs. 5.27 ± 0.7 μmol·g−1·h−1) and white muscle (1.85 ± 0.3 vs. 1.11 ± 0.2 μmol·g−1·h−1). There was no difference in Akt/PKB phosphorylation between treatment groups; however, the amino acid treatment resulted in increased AS160 phosphorylation in both muscle fiber types. Glycogen synthase phosphorylation was reduced in fast-twitch red muscle of CHO-AA-1 compared with CHO, whereas mTOR phosphorylation was increased. These differences were not noted in fast-twitch white muscle. These findings suggest that amino acid supplementation can improve glucose tolerance by increasing skeletal muscle glucose uptake and intracellular disposal through enhanced intracellular signaling.

Details

ISSN :
15221555
Volume :
300
Issue :
4
Database :
OpenAIRE
Journal :
American journal of physiology. Endocrinology and metabolism
Accession number :
edsair.doi.dedup.....fe1a0483fa9653835f414f14b7cea3bc