Back to Search
Start Over
Screening potential plant species for arresting particulates in Jharia coalfield, India
- Source :
- Sustainable Environment Research, Vol 29, Iss 1, Pp 1-14 (2019)
- Publication Year :
- 2019
- Publisher :
- BMC, 2019.
-
Abstract
- Mining and related activities cause severe degradation of ambient air quality. A study of particulate matter (PM) across transportation, mining and control (C) sites for dust attenuation capacity (DAC) in selected tree species were carried out in Jharia coalfield (JCF) to estimate the menace of dust pollution and also to measure air pollution tolerance index (APTI). Results indicated that the maximum value of PM10 and PM2.5 ranged from 54 to 174 and 29 to 78 μg m− 3 respectively across all the sites. The maximum values occurred in transportation and the minimum at C for both the particulates. Mining and transportation resulted in an increase in PM10 values by 161 and 200% and PM2.5 values by 100 and 136% respectively as compared to those in C. The mean concentration of PM10 and PM2.5 across the sites exceeded the permissible limit of 100 and 60 μg m− 3 respectively. Transportation was worse than mining due to the high proportion of hazardous fine (PM2.5) particulates. DAC indicated that Tectona grandis (TG) captured maximum dust (2.15 mg cm− 2) with 85% and Peltophorum inerme (PI) the minimum (0.15 mg cm− 2) with 5% efficiency. The trend for DAC showed TG > Ficus glomerata (FG) > Psidium guajava (PG) > Ficus benghalensis (FB) > Ficus religiosa (FR) > Alstonia scholaris (AS) > Aegle marmelos (AM) > Gmelina arborea (GA) > Dalbergia sissoo (DS) > Syzyzium cumini (SC) > Azadirachta indica (AI) > Terminalia arjuna (TA) > Mangifera indica (MI) > Albizia lebbeck (AL) > PI in descending order. APTI based on pH, total chlorophyll, ascorbic acid and relative water content indicated maximum values for TG (17) with 90% and minimum for PI (10) with 57% of the total and is a measure of the sustainability of plants in JCF. The descending order for APTI was TG > PG > FG > FR > FB > AI > MI > SC > DS > GA > AM > AS > AL > TA > PI. Thus, TG is the most suitable and PI the least. Stomatal density is negatively related to DAC and positively related to APTI. DAC therefore, cannot be attributed to a single factor but a mix of complex factors such as morphological and anatomical characteristics of the leaf, particle size, species type, metabolism, location, meteorology and stress conditions. Based on the findings a greenbelt design was proposed to improve the air quality of the mining and transportation areas.
- Subjects :
- Environmental Engineering
010504 meteorology & atmospheric sciences
PM
Green Belt
010501 environmental sciences
01 natural sciences
lcsh:TD1-1066
chemistry.chemical_compound
Animal science
DAC
lcsh:Environmental technology. Sanitary engineering
Waste Management and Disposal
APTI
0105 earth and related environmental sciences
Water Science and Technology
Stomatal density
JCF
biology
Renewable Energy, Sustainability and the Environment
Single factor
Peltophorum
Particulates
biology.organism_classification
Ascorbic acid
Pollution
chemistry
Tectona
Chlorophyll
Plant species
Biofilter
Subjects
Details
- Language :
- English
- ISSN :
- 24682039
- Volume :
- 29
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Sustainable Environment Research
- Accession number :
- edsair.doi.dedup.....fe13e4c9b7280f3ef057098f1025779a