Back to Search
Start Over
Chord-arc curves and the Beurling transform
- Source :
- Inventiones mathematicae. 205:57-81
- Publication Year :
- 2015
- Publisher :
- Springer Science and Business Media LLC, 2015.
-
Abstract
- We study the relation between the geometric properties of a quasicircle~$\Gamma$ and the complex dilatation~$\mu$ of a quasiconformal mapping that maps the real line onto~$\Gamma$. Denoting by~$S$ the Beurling transform, we characterize Bishop-Jones quasicircles in terms of the boundedness of the operator~$(I-\mu S)$ on a particular weighted $L^2$~space, and chord-arc curves in terms of its invertibility. As an application we recover the~$L^2$ boundedness of the Cauchy integral on chord-arc curves.<br />Comment: 27 pages
- Subjects :
- Chord (geometry)
Quasiconformal mapping
Pure mathematics
Mathematics - Complex Variables
Mathematics::Complex Variables
General Mathematics
010102 general mathematics
Hardy space
01 natural sciences
symbols.namesake
Mathematics - Classical Analysis and ODEs
0103 physical sciences
Classical Analysis and ODEs (math.CA)
FOS: Mathematics
symbols
010307 mathematical physics
Complex Variables (math.CV)
0101 mathematics
Real line
Cauchy's integral formula
Mathematics
Subjects
Details
- ISSN :
- 14321297 and 00209910
- Volume :
- 205
- Database :
- OpenAIRE
- Journal :
- Inventiones mathematicae
- Accession number :
- edsair.doi.dedup.....fe0767e3bfda569f7ec023ecec4572b1