Back to Search Start Over

Elements About Exploratory, Knowledge-Based, Hybrid, and Explainable Knowledge Discovery

Authors :
Amedeo Napoli
Miguel Couceiro
Knowledge representation, reasonning (ORPAILLEUR)
Inria Nancy - Grand Est
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Natural Language Processing & Knowledge Discovery (LORIA - NLPKD)
Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Diana Cristea
Florence Le Ber
Baris Sertkaya
Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)
Source :
Lecture Notes in Computer Science, ICFCA 2019-15th International Conference on Formal Concept Analysis, ICFCA 2019-15th International Conference on Formal Concept Analysis, Jun 2019, Frankfurt, Germany. pp.3-16, ⟨10.1007/978-3-030-21462-3_1⟩, Formal Concept Analysis ISBN: 9783030214616, ICFCA
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; Knowledge Discovery in Databases (KDD) and especially pattern mining can be interpreted along several dimensions, namely data, knowledge, problem-solving and interactivity. These dimensions are not disconnected and have a direct impact on the quality, applicability, and efficiency of KDD. Accordingly, we discuss some objectives of KDD based on these dimensions, namely exploration, knowledge orientation, hybridization, and explanation. The data space and the pattern space can be explored in several ways, depending on specific evaluation functions and heuristics, possibly related to domain knowledge. Furthermore, numerical data are complex and supervised numerical machine learning methods are usually the best candidates for efficiently mining such data. However, the work and output of numerical methods are most of the time hard to understand, while symbolic methods are usually more intelligible. This calls for hybridization, combining numerical and symbolic mining methods to improve the applicability and interpretability of KDD. Moreover, suitable explanations about the operating models and possible subsequent decisions should complete KDD, and this is far from being the case at the moment. For illustrating these dimensions and objectives, we analyze a concrete case about the mining of biological data, where we characterize these dimensions and their connections. We also discuss dimensions and objectives in the framework of Formal Concept Analysis and we draw some perspectives for future research.

Details

Language :
English
ISBN :
978-3-030-21461-6
ISBNs :
9783030214616
Database :
OpenAIRE
Journal :
Lecture Notes in Computer Science, ICFCA 2019-15th International Conference on Formal Concept Analysis, ICFCA 2019-15th International Conference on Formal Concept Analysis, Jun 2019, Frankfurt, Germany. pp.3-16, ⟨10.1007/978-3-030-21462-3_1⟩, Formal Concept Analysis ISBN: 9783030214616, ICFCA
Accession number :
edsair.doi.dedup.....fdf2b91ae635e3e4692ec2fe4b750b7a
Full Text :
https://doi.org/10.1007/978-3-030-21462-3_1⟩