Back to Search Start Over

Biophysical Characterization of Anticoagulant Hemextin AB Complex from the Venom of Snake Hemachatus haemachatus

Authors :
Rajamani Lakshminarayanan
Ganesh S. Anand
Suresh Valiyaveettil
Yajnavalka Banerjee
R. Manjunatha Kini
Subramanian Vivekanandan
Source :
Biophysical Journal. 93(11):3963-3976
Publication Year :
2007
Publisher :
Elsevier BV, 2007.

Abstract

Hemextin AB complex from the venom of Hemachatus haemachatus is the first known natural anticoagulant that specifically inhibits the enzymatic activity of blood coagulation factor VIIa in the absence of factor Xa. It is also the only known heterotetrameric complex of two three-finger toxins. Individually only hemextin A has mild anticoagulant activity, whereas hemextin B is inactive. However, hemextin B synergistically enhances the anticoagulant activity of hemextin A and their complex exhibits potent anticoagulant activity. In this study we characterized the nature of molecular interactions leading to the complex formation. Circular dichroism studies indicate the stabilization of β-sheet in the complex. Hemextin AB complex has an increased apparent molecular diameter in both gas and liquid phase techniques. The complex formation is enthalpically favorable and entropically unfavorable with a negative change in the heat capacity. Thus, the anticoagulant complex shows less structural flexibility than individual subunits. Both electrostatic and hydrophobic interactions are important for the complexation; the former driving the process and the latter helping in the stabilization of the tetramer. The tetramer dissociates into dimers and monomers with the increase in the ionic strength of the solution and also with increase in the glycerol concentration in the buffer. The two dimers formed under each of these conditions display distinct differences in their apparent molecular diameters and anticoagulant properties. Based on these results, we have proposed a model for this unique anticoagulant complex.

Details

ISSN :
00063495
Volume :
93
Issue :
11
Database :
OpenAIRE
Journal :
Biophysical Journal
Accession number :
edsair.doi.dedup.....fdd434c706c132124e97138189494d05
Full Text :
https://doi.org/10.1529/biophysj.106.100164