Back to Search
Start Over
SciPy 1.0: fundamental algorithms for scientific computing in Python: 24 February 2020 : An amendment to this paper has been published and can be accessed via a link at the top of the paper
- Source :
- Nature Methods, Nature Methods, 2020, 17, pp.261-272. ⟨10.1038/s41592-019-0686-2⟩, Virtanen, P, Gommers, R, Oliphant, T E, Haberland, M, Reddy, T, Cournapeau, D, Burovski, E, Peterson, P, Weckesser, W, Bright, J, Van Der Walt, S J, Brett, M, Wilson, J, Millman, K J, Mayorov, N, Nelson, A R J, Jones, E, Kern, R, Larson, E, Carey, C J, Polat, I, Feng, Y, Moore, E W, Vanderplas, J, Laxalde, D, Perktold, J, Cimrman, R, Henriksen, I, Quintero, E A, Harris, C R, Archibald, A M, Ribeiro, A H, Pedregosa, F, Van Mulbregt, P & Tygier, S 2020, ' SciPy 1.0: fundamental algorithms for scientific computing in Python ', Nature Methods . https://doi.org/10.1038/s41592-019-0686-2
- Publication Year :
- 2020
-
Abstract
- SciPy is an open source scientific computing library for the Python programming language. SciPy 1.0 was released in late 2017, about 16 years after the original version 0.1 release. SciPy has become a de facto standard for leveraging scientific algorithms in the Python programming language, with more than 600 unique code contributors, thousands of dependent packages, over 100,000 dependent repositories, and millions of downloads per year. This includes usage of SciPy in almost half of all machine learning projects on GitHub, and usage by high profile projects including LIGO gravitational wave analysis and creation of the first-ever image of a black hole (M87). The library includes functionality spanning clustering, Fourier transforms, integration, interpolation, file I/O, linear algebra, image processing, orthogonal distance regression, minimization algorithms, signal processing, sparse matrix handling, computational geometry, and statistics. In this work, we provide an overview of the capabilities and development practices of the SciPy library and highlight some recent technical developments.<br />Comment: Article source data is available here: https://github.com/scipy/scipy-articles
- Subjects :
- FOS: Computer and information sciences
Computer science
01 natural sciences
Biochemistry
Computer Science - Software Engineering
631/45/56
Data Structures and Algorithms (cs.DS)
010303 astronomy & astrophysics
computer.programming_language
0303 health sciences
Signal processing
Signal Processing, Computer-Assisted
Computational Physics (physics.comp-ph)
ddc
Linear algebra
Perspective
Minification
Physics - Computational Physics
Algorithm
Algorithms
Biotechnology
De facto standard
FOS: Physical sciences
Image processing
History, 21st Century
Models, Biological
706/703/559
Python (Computer program language)
Computational science
03 medical and health sciences
Computer Science - Data Structures and Algorithms
0103 physical sciences
Computer Simulation
[INFO]Computer Science [cs]
ddc:530
Cluster analysis
Molecular Biology
Scientific computing
030304 developmental biology
Sparse matrix
software
Computational Biology
Cell Biology
Python (programming language)
History, 20th Century
[INFO.INFO-NA]Computer Science [cs]/Numerical Analysis [cs.NA]
Software Engineering (cs.SE)
Nonlinear Dynamics
Linear Models
Computer Science - Mathematical Software
Programming Languages
631/114
computer
Mathematical Software (cs.MS)
Python
Subjects
Details
- Language :
- English
- ISSN :
- 15487091 and 15487105
- Database :
- OpenAIRE
- Journal :
- Nature Methods, Nature Methods, 2020, 17, pp.261-272. ⟨10.1038/s41592-019-0686-2⟩, Virtanen, P, Gommers, R, Oliphant, T E, Haberland, M, Reddy, T, Cournapeau, D, Burovski, E, Peterson, P, Weckesser, W, Bright, J, Van Der Walt, S J, Brett, M, Wilson, J, Millman, K J, Mayorov, N, Nelson, A R J, Jones, E, Kern, R, Larson, E, Carey, C J, Polat, I, Feng, Y, Moore, E W, Vanderplas, J, Laxalde, D, Perktold, J, Cimrman, R, Henriksen, I, Quintero, E A, Harris, C R, Archibald, A M, Ribeiro, A H, Pedregosa, F, Van Mulbregt, P & Tygier, S 2020, ' SciPy 1.0: fundamental algorithms for scientific computing in Python ', Nature Methods . https://doi.org/10.1038/s41592-019-0686-2
- Accession number :
- edsair.doi.dedup.....fdc72e11bb5b5dd5b8be9cd6adc0e9b9
- Full Text :
- https://doi.org/10.1038/s41592-019-0686-2⟩