Back to Search Start Over

Imaging the strain evolution of a platinum nanoparticle under electrochemical control

Authors :
Clément Atlan
Corentin Chatelier
Isaac Martens
Maxime Dupraz
Arnaud Viola
Ni Li
Lu Gao
Steven J. Leake
Tobias U. Schülli
Joël Eymery
Frédéric Maillard
Marie-Ingrid Richard
European Synchroton Radiation Facility [Grenoble] (ESRF)
Electrochimie Interfaciale et Procédés (EIP)
Laboratoire d'Electrochimie et de Physico-chimie des Matériaux et des Interfaces (LEPMI)
Institut de Chimie du CNRS (INC)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
Nanostructures et Rayons X (NRX)
Modélisation et Exploration des Matériaux (MEM)
Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)
Eindhoven University of Technology [Eindhoven] (TU/e)
European Project: 818823,CARINE
Source :
Nature Materials, Nature Materials, 2023, 22, pp.754-761. ⟨10.1038/s41563-023-01528-x⟩
Publication Year :
2023
Publisher :
Springer Science and Business Media LLC, 2023.

Abstract

International audience; Surface strain is widely employed in gas phase catalysis and electrocatalysis to control the binding energies of adsorbates on active sites. However, in situ or operando strain measurements are experimentally challenging, especially on nanomaterials. Here, we exploit coherent diffraction at the new 4 th generation Extremely Brilliant Source at the European Synchrotron Radiation Facility (ESRF-EBS) to map and quantify strain inside individual Pt catalyst nanoparticles under electrochemical control. 3D nanoresolution strain microscopy together with density functional theory and atomistic simulations show for the first time evidence of heterogeneous and potential-dependent strain distribution between highly-coordinated ({100} and {111} facets) and under-coordinated atoms (edges and corners) as well as evidence of strain propagation from the surface to the bulk of the nanoparticle. These dynamic structural relationships directly inform the design of strain-engineered nanocatalysts for energy storage and conversion applications.

Details

ISSN :
14764660 and 14761122
Database :
OpenAIRE
Journal :
Nature Materials
Accession number :
edsair.doi.dedup.....fda66b6f3f2fdf34d54fbdfa65ba15f5
Full Text :
https://doi.org/10.1038/s41563-023-01528-x