Back to Search Start Over

Robust Kalman Filtering Under Model Uncertainty: The Case of Degenerate Densities

Authors :
Shenglun Yi
Mattia Zorzi
Source :
IEEE Transactions on Automatic Control. 67:3458-3471
Publication Year :
2022
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2022.

Abstract

We consider a robust state space filtering problem in the case that the transition probability density is unknown and possibly degenerate. The resulting robust filter has a Kalman-like structure and solves a minimax game: the nature selects the least favorable model in a prescribed ambiguity set which also contains non-Gaussian probability densities, while the other player designs the optimum filter for the least favorable model. It turns out that the resulting robust filter is characterized by a Riccati-like iteration evolving on the cone of the positive semidefinite matrices. Moreover, we study the convergence of such iteration in the case that the nominal model is with constant parameters on the basis of the contraction analysis in the same spirit of Bougerol. Finally, some numerical examples show that the proposed filter outperforms the standard Kalman filter.

Details

ISSN :
23343303 and 00189286
Volume :
67
Database :
OpenAIRE
Journal :
IEEE Transactions on Automatic Control
Accession number :
edsair.doi.dedup.....fda614141aa23f73186ef1c70ce9de03