Back to Search Start Over

Automated Training Data Generation from Spectral Indexes for Mapping Surface Water Extent with Sentinel-2 Satellite Imagery at 10 m and 20 m Resolutions

Authors :
Sean P. Griffin
Kristofer Lasko
Sarah J. Becker
Andrew Griffin
Susan L. Lyon
Megan C. Maloney
Source :
Remote Sensing, Volume 13, Issue 22, Remote Sensing, Vol 13, Iss 4531, p 4531 (2021)
Publication Year :
2021
Publisher :
Multidisciplinary Digital Publishing Institute, 2021.

Abstract

This study presents an automated methodology to generate training data for surface water mapping from a single Sentinel-2 granule at 10 m (4 band, VIS/NIR) or 20 m (9 band, VIS/NIR/SWIR) resolution without the need for ancillary training data layers. The 20 m method incorporates an ensemble of three spectral indexes with optimal band thresholds, whereas the 10 m method achieves similar results using fewer bands and a single spectral index. A spectrally balanced and randomly generated set of training data based on the index values and optimal thresholds is used to fit machine learning classifiers. Statistical validation compares the 20 m ensemble-only method to the 20 m ensemble method with a random forest classifier. Results show the 20 m ensemble-only method had an overall accuracy of 89.5% (±1.7%), whereas the ensemble method combined with the random forest classifier performed better, with a ~4.8% higher overall accuracy: 20 m method (94.3% (±1.3%)) with optimal spectral index and SWIR thresholds of −0.03 and 800, respectively, and 10 m method (93.4% (±1.5%)) with optimal spectral index and NIR thresholds of −0.01 and 800, respectively. Comparison of other supervised classifiers trained automatically with the framework typically resulted in less than 1% accuracy improvement compared with the random forest, suggesting that training data quality is more important than classifier type. This straightforward framework enables accurate surface water classification across diverse geographies, making it ideal for development into a decision support tool for water resource managers.

Details

Language :
English
ISSN :
20724292
Database :
OpenAIRE
Journal :
Remote Sensing
Accession number :
edsair.doi.dedup.....fd9f8dab5380a7e2b15ff5a0606b4f8e
Full Text :
https://doi.org/10.3390/rs13224531