Back to Search Start Over

IsoRankN: spectral methods for global alignment of multiple protein networks

Authors :
Michael H. Baym
Kanghao Lu
Chung-Shou Liao
Bonnie Berger
Rohit Singh
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology. Department of Mathematics
Berger Leighton, Bonnie
Berger, Bonnie
Liao, Chung-Shou
Lu, Kanghao
Baym, Michael Hartmann
Singh, Rohit
Source :
Bioinformatics, Oxford
Publication Year :
2009

Abstract

Motivation: With the increasing availability of large protein–protein interaction networks, the question of protein network alignment is becoming central to systems biology. Network alignment is further delineated into two sub-problems: local alignment, to find small conserved motifs across networks, and global alignment, which attempts to find a best mapping between all nodes of the two networks. In this article, our aim is to improve upon existing global alignment results. Better network alignment will enable, among other things, more accurate identification of functional orthologs across species. Results: We introduce IsoRankN (IsoRank-Nibble) a global multiple-network alignment tool based on spectral clustering on the induced graph of pairwise alignment scores. IsoRankN outperforms existing algorithms for global network alignment in coverage and consistency on multiple alignments of the five available eukaryotic networks. Being based on spectral methods, IsoRankN is both error tolerant and computationally efficient.<br />National Science Council of Taiwan (NSC-096-2917-I- 002-114)<br />National Science Council of Taiwan (NSC-095-2221-E-001-016-MY3)<br />Fannie and John Hertz Foundation

Details

ISSN :
13674811
Volume :
25
Issue :
12
Database :
OpenAIRE
Journal :
Bioinformatics (Oxford, England)
Accession number :
edsair.doi.dedup.....fd8b3fd2a4bfad071d671390a1a764cb