Back to Search Start Over

Graphene oxide and Lambda exonuclease assisted screening of L-carnitine aptamers and the site-directed mutagenesis design of C-rich structure aptamer

Authors :
Yanmei Zhao
Mingzhu Gong
Zefeng He
Xia Liu
Yuhui Zhang
Jidong Yang
Dan Li
Ligang Xing
Ping Yan
Source :
Biochemical and Biophysical Research Communications. 545:171-176
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

In this study, Graphene Oxide (GO) was used to screen the binding with the aptamers of L-carnitine chiral enantiomers. The ssDNA library was prepared by the method of Lambda exonuclease. In addition, a simple casing device was designed to improve the purification and recovery efficiency of the small ssDNA fragments in the process of screening. Finally, more than 160,000 aptamer sequences were obtained by high-throughput sequencing. We determined the strongest affinity aptamer sequence, CA04, by the Resonance Rayleigh scattering (RRS) technology. We also analyzed the key binding sites (in the 16th position case) of the truncated aptamer sequence CAD10. Interestingly, we found that aptamer CA10 and CA06 were both C-rich bases through sequence alignment and analysis, and the aptamer CA10 was confirmed that the CA10 and CA06 were formed under acidic conditions (pH 4.5) by CD spectrum and ESI-MS analysis. The interaction between gold nanoparticles (AuNPs) and functionalized aptamer CA10 was analyzed. We used Site-directed mutagenesis design and QGRS Mapper to optimize aptamer CA10, where an optimal aptamer CA10-03 were obtained after affinity analysis. It is also proved to be an effective method to obtain stronger affinity aptamer. Meanwhile, Native-PAGE and UV spectrum analysis were performed on the mutation sequences, and the interaction with ThT was analyzed. Finally, it is hoped that my study can provide help for later identification and detection of L-carnitine.

Details

ISSN :
0006291X
Volume :
545
Database :
OpenAIRE
Journal :
Biochemical and Biophysical Research Communications
Accession number :
edsair.doi.dedup.....fd8b127d3a30de1a65daae8c53d81b06
Full Text :
https://doi.org/10.1016/j.bbrc.2021.01.044