Back to Search Start Over

On the geometry of stabilizer states

Authors :
Hector J. Garcia
Igor L. Markov
Andrew W. Cross
Source :
Quantum Information and Computation. 14:683-720
Publication Year :
2014
Publisher :
Rinton Press, 2014.

Abstract

Large-scale quantum computation is likely to require massive quantum error correction (QEC). QEC codes and circuits are described via the stabilizer formalism, which represents stabilizer states by keeping track of the operators that preserve them. Such states are obtained by stabilizer circuits (consisting of CNOT, Hadamard and Phase gates) and can be represented compactly on conventional computers using $O(n^2)$ bits, where $n$ is the number of qubits. As an additional application, the work by Aaronson and Gottesman suggests the use of superpositions of stabilizer states to represent arbitrary quantum states. To aid in such applications and improve our understanding of stabilizer states, we characterize and count nearest-neighbor stabilizer states, quantify the distribution of angles between pairs of stabilizer states, study succinct stabilizer superpositions and stabilizer bivectors, explore the approximation of non-stabilizer states by single stabilizer states and short linear combinations of stabilizer states, develop an improved inner-product computation for stabilizer states via synthesis of compact canonical stabilizer circuits, propose an orthogonalization procedure for stabilizer states, and evaluate several of these algorithms empirically.<br />38 pages, 10 figures, 2 Appendices. arXiv admin note: substantial text overlap with arXiv:1210.6646

Details

ISSN :
15337146
Volume :
14
Database :
OpenAIRE
Journal :
Quantum Information and Computation
Accession number :
edsair.doi.dedup.....fd402f596a06b03e7336afc0b78e6bc9
Full Text :
https://doi.org/10.26421/qic14.7-8-9